back to the search page

Query Topic: NFKB

Query Date:

tumor necrosis factor(30)

Two reactive behaviors of chondrocytes in an IL-1β-induced inflammatory environment revealed by the single-cell RNA sequencing.
To investigate the heterogeneous responses of Human articular chondrocytes were expanded, Two major cell clusters with distinct expression patterns were identified at the initial phase and were with heterogeneous variation that coincides with inflammation progress. They transformed into two terminal cell clusters one of which exhibited OA-phenotype and proinflammatory characteristics through two paths, "response-to-inflammation" and "atypical response-to-inflammation", respectively. The involved cell clusters exhibited intrinsic relationship with cell types within native cartilage from OA patients. Genes controlling cell transformation to OA-phenotype were relating to the tumor necrosis factor (TNF) signaling pathway via NFKB, up-regulated KRAS signaling and the IL2/STAT5 signaling pathway and pathways relating to apoptosis and reactive oxygen species. The
Publication Date: 2021-04-22
Journal: Aging

transcription factor nfkb(27)

The lectin ArtinM activates RBL-2H3 mast cells without inducing degranulation.
Mast cells are connective tissue resident cells with morphological and functional characteristics that contribute to their role in allergic and inflammatory processes, host defense and maintenance of tissue homeostasis. Mast cell activation results in the release of pro-inflammatory mediators which are largely responsible for the physiological functions of mast cells. The lectin ArtinM, extracted from Artocarpus heterophyllus (jackfruit), binds to D-manose, thus inducing degranulation of mast cells. ArtinM has several immunomodulatory properties including acceleration of wound healing, and induction of cytokine release. The aim of the present study was to investigate the role of ArtinM in the activation and proliferation of mast cells. The rat mast cell line RBL-2H3 was used throughout this study. At a low concentration (0.25μg/mL), ArtinM induced mast cell activation and the release of IL-6 without stimulating the release of pre-formed or newly formed mediators. Additionally, when the cells were activated by ArtinM protein tyrosine phosphorylation was stimulated. The low concentration of ArtinM also activated the transcription factor NFkB, but not NFAT. ArtinM also affected the cell cycle and stimulated cell proliferation. Therefore, ArtinM may have therapeutic applications by modulating immune responses due to its ability to activate mast cells and promote the release of newly synthesized mediators. Additionally, ArtinM could have beneficial effects at low concentrations without degranulating mast cells and inducing allergic reactions.
Publication Date: 2020-03-26
Journal: PloS one

reactive oxygen species(19)

Rac1 Signaling: From Intestinal Homeostasis to Colorectal Cancer Metastasis.
The small GTPase Rac1 has been implicated in a variety of dynamic cell biological processes, including cell proliferation, cell survival, cell-cell contacts, epithelial mesenchymal transition (EMT), cell motility, and invasiveness. These processes are orchestrated through the fine tuning of Rac1 activity by upstream cell surface receptors and effectors that regulate the cycling Rac1-GDP (off state)/Rac1-GTP (on state), but also through the tuning of Rac1 accumulation, activity, and subcellular localization by post translational modifications or recruitment into molecular scaffolds. Another level of regulation involves Rac1 transcripts stability and splicing. Downstream, Rac1 initiates a series of signaling networks, including regulatory complex of actin cytoskeleton remodeling, activation of protein kinases (PAKs, MAPKs) and transcription factors (NFkB, Wnt/β-catenin/TCF, STAT3, Snail), production of reactive oxygen species (NADPH oxidase holoenzymes, mitochondrial ROS). Thus, this GTPase, its regulators, and effector systems might be involved at different steps of the neoplastic progression from dysplasia to the metastatic cascade. After briefly placing Rac1 and its effector systems in the more general context of intestinal homeostasis and in wound healing after intestinal injury, the present review mainly focuses on the several levels of Rac1 signaling pathway dysregulation in colorectal carcinogenesis, their biological significance, and their clinical impact.
Publication Date: 2020-03-18
Journal: Cancers

necrosis factor alpha(15)

Fish oil attenuated dystrophic muscle markers of inflammation via FFA1 and FFA4 in the mdx mouse model of DMD.
In the present study we investigated the involvement of free fatty acid (FFA) receptors in the anti-inflammatory role of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in dystrophic muscles, by administering FFA blockers in the mdx mouse model of dystrophy. Mdx mice (3 months-old) were treated with fish oil capsules (FDC Vitamins; 0.4 g EPA and 0.2 g DHA; gavage) alone or concomitant to FFA1 and FFA4 blockers (GW1100 and AH7614; i.p.). C57BL/10 mice (3 months-old) and untreated-mdx mice received mineral oil and were used as controls. After 1 month of treatment, plasma markers of myonecrosis (total and cardiac creatine kinase; CK), the levels of FFA1 and FFA4 and of the markers of inflammation, nuclear transcription factor kappa B (NFkB), tumor necrosis factor alpha (TNF-α) and interleukin 1β (IL-1β) were analyzed in the diaphragm muscle and heart by western blot. Fish oil significantly reduced total CK, cardiac CK and the levels of NFkB (diaphragm), and of TNF-α and IL-1β (diaphragm and heart) in mdx. In the dystrophic diaphragm, FFA1 was increased compared to normal. Blockers of FFA1 and FFA4 significantly inhibited the effects of fish oil treatment in both dystrophic muscles. The anti-inflammatory effects of fish oil in dystrophic diaphragm muscle and heart were mediated through FFA1 and FFA4. No presente estudo investigamos o envolvimento de receptores de ácidos graxos livres (FFA) no efeito anti-inflamatório dos ácidos eicosapentaenoico (EPA) e docosahexaenoico (DHA) em músculos distróficos, administrando bloqueadores de FFA no camundongo mdx, modelo de distrofia. Camundongos mdx (3 meses de idade) foram tratados com cápsulas de óleo de peixe (FDC Vitamins; 0.4 g EPA e 0.2 g DHA; gavagem) ou com cápsulas de óleo de peixe concomitante a bloqueadores de FFA1 e FFA4 (GW1100 e AH7614; i.p.). Camundongos C57BL/10 (3 meses de idade) e camundongos mdx não tratados receberam óleo mineral e serviram de controle. Após 1 mês de tratamento, marcadores plasmáticos de mionecrose (creatina quinase total e cardíaca; CK), os níveis de FFA1 e FFA4 e dos marcadores de inflamação fator de transcrição nuclear kappa B (NFkB, nuclear transcription factor kappa B), fator de necrose tumoral alpha (TNF-α, tumor necrosis factor alpha) e interleucina 1β (IL-1β) foram analisados no músculo diafragma e no coração através de western blot. O óleo de peixe reduziu de forma significativa a CK total, CK cardíaca e os níveis de NFkB (diafragma), TNF-α e IL-1β (diafragma e coração) no mdx. No diafragma distrófico, FFA1 estava aumentado comparado ao normal. Os bloqueadores de FFA1 e FFA4 inibiram de forma significativa os efeitos do tratamento com óleo de peixe em ambos músculos distróficos. Os efeitos anti-inflamatórios do óleo de peixe nos músculos distróficos diafragma e cardíaco foram mediados por FFA1 e FFA4.
Publication Date: 2020-11-03
Journal: Anatomical record (Hoboken, N.J. : 2007)

protein kinase(34)

Combination of autophagy and NFE2L2/NRF2 activation as a treatment approach for neuropathic pain.
Macroautophagy/autophagy, an evolutionarily conserved process, plays an important role in the regulation of immune inflammation and nervous system homeostasis. However, the exact role and mechanism of autophagy in pain is still unclear. Here, we showed that impaired autophagy flux mainly occurred in astrocytes during the maintenance of neuropathic pain. No matter the stage of neuropathic pain induction or maintenance, activation of autophagy relieved the level of pain, whereas inhibition of autophagy aggravated pain. Moreover, the levels of neuroinflammation and reactive oxygen species (ROS) were increased or decreased following autophagy inhibition or activation. Further study showed that inhibition of autophagy slowed the induction, but increased the maintenance of neuroinflammatory responses, which could be achieved by promoting the binding of TRAF6 (TNF receptor-associated factor 6) to K63 ubiquitinated protein, and increasing the levels of p-MAPK8/JNK (mitogen-activated protein kinase 8) and nuclear factor of kappa light polypeptide gene enhancer in B cells (NFKB/NF-κB). Impaired autophagy also reduced the protective effect of astrocytes on neurons against ROS stress because of the decrease in the level of glutathione released by astrocytes, which could be improved by activating the NFE2L2/NRF2 (nuclear factor, erythroid derived 2, like 2) pathway. We also demonstrated that simultaneous activation of autophagy and the NFE2L2 pathway further relieved pain, compared to activating autophagy alone. Our study provides an underlying mechanism by which autophagy participates in the regulation of neuropathic pain, and a combination of autophagy and NFE2L2 activation may be a new treatment approach for neuropathic pain.
Publication Date: 2021-04-10
Journal: Autophagy

ligand rankl(30)

Pharmacodynamics of Pre-Operative PD1 checkpoint blockade and receptor activator of NFkB ligand (RANKL) inhibition in non-small cell lung cancer (NSCLC): study protocol for a multicentre, open-label, phase 1B/2, translational trial (POPCORN).
Neoadjuvant immunotherapy targeting immune checkpoint programmed death-1 (PD-1) is under investigation in various tumour settings including non-small-cell lung cancer (NSCLC). Preclinical models demonstrate the superior power of the immunotherapy provided in a neoadjuvant (pre-operative) compared with an adjuvant (post-operative) setting to eradicate metastatic disease and induce long-lasting antigen-specific immunity. Novel effective immunotherapy combinations are widely sought in the oncology field, targeting non-redundant mechanisms of immune evasion. A promising combination partner with anti-PD1 in NSCLC is denosumab, a monoclonal antibody blocking receptor activator of NF-κB ligand (RANKL). In preclinical cancer models and in a large retrospective case series in NSCLC, anti-cancer activity has been reported for the combination of immune checkpoint inhibition (ICI) and denosumab. Furthermore, clinical trials of ICI and denosumab are underway in advanced melanoma and clear-cell renal cell carcinoma. However, the mechanism of action of combination anti-PD1 and anti-RANKL is poorly defined. This open-label multicentre trial will randomise by minimisation 30 patients with resectable stage IA (primary > 2 cm) to IIIA NSCLC to a neoadjuvant treatment regime of either two doses of nivolumab (3 mg/kg every 2 weeks) or two doses of nivolumab (same regimen) plus denosumab (120 mg every 2 weeks, following nivolumab). Each treatment arm is of equal size and will be approximately balanced with respect to histology (squamous vs. non-squamous) and clinical stage (I-II vs. IIIA). All patients will receive surgery for their tumour 2 weeks after the final dose of neoadjuvant therapy. The primary outcome will be translational research to define the tumour-immune correlates of combination therapy compared with monotherapy. Key secondary outcomes will include a comparison of rates of the following between each arm: toxicity, response (pathological and radiological), and microscopically complete resection. The POPCORN study provides a unique platform for translational research to determine the mechanism of action of a novel proposed combination immunotherapy for cancer. Prospectively registered on Australian New Zealand Clinical Trials Registry (ACTRN12618001121257) on 06/07/2018.
Publication Date: 2019-12-21
Journal: Trials

nitric oxide(28)

Endocan alters nitric oxide production in endothelial cells by targeting AKT/eNOS and NFkB/iNOS signaling.
Endocan, a secretary proteoglycan, known to induce vascular inflammation. Nitric oxide (NO) produced by endothelial cells is an important signaling molecule in maintaining the vascular homeostasis. However, the precise effect of endocan in regulating NO pathway is not known. The present study explores the effect of endocan on eNOS-iNOS-NO and ROS production in cultured endothelial cells. Results showed that recombinant endocan treatment in HUVEC could increase NO and nitrite levels. However, pharmacological inhibition of iNOS using 1400W significantly decreased these effects. Furthermore, protein expression analysis showed that endocan could inhibit AKT/eNOS pathway and activate NF-κB/iNOS pathway. The production of superoxide, hydrogen peroxide, peroxynitrite and total ROS were also significantly increased with endocan treatment supported by decreased activity of superoxide dismutase and catalase. Moreover, selective inhibition of NOX reduced the ROS formation. In addition, mRNA expression analysis demonstrated that endocan can upregulate the expression of NOX1, NOX2 and NOX4. These findings suggest that endocan alters the NO production and their by enhances oxidative stress in endothelial cells. Thus, inhibition of endocan-NO signaling could be a one of the strategy to reduce oxidative stress in vascular disease.
Publication Date: 2021-10-01
Journal: Nitric oxide : biology and chemistry

mrna expression(28)

Cateslytin abrogates lipopolysaccharide-induced cardiomyocyte injury by reducing inflammation and oxidative stress through toll like receptor 4 interaction.
Global public health is threatened by new pathogens, antimicrobial resistant microorganisms and a rapid decline of conventional antimicrobials efficacy. Thus, numerous medical procedures become life-threating. Sepsis can lead to tissue damage such as myocardium inflammation, associated with reduction of contractility and diastolic dysfunction, which may cause death. In this perspective, growing interest and attention are paid on host defence peptides considered as new potential antimicrobials. In the present study, we investigated the physiological and biochemical properties of Cateslytin (Ctl), an endogenous antimicrobial chromogranin A-derived peptide, in H9c2 cardiomyocytes exposed to lipopolysaccharide (LPS) infection. We showed that both Ctl (L and D) enantiomers, but not their scrambled counterparts, significantly increased cardiomyocytes viability following LPS, even if L-Ctl was effective at lower concentration (1 nM) compared to D-Ctl (10 nM). L-Ctl mitigated LPS-induced LDH release and oxidative stress, as visible by a reduction of MDA and protein carbonyl groups content, and by an increase of SOD activity. Molecular docking simulations strongly suggested that L-Ctl modulates TLR4 through a direct binding to the partner protein MD-2. Molecular analyses indicated that the protection mediated by L-Ctl against LPS-evoked sepsis targeted the TLR4/ERK/JNK/p38-MAPK pathway, regulating NFkB p65, NFkB p52 and COX2 expression and repressing the mRNA expression levels of the LPS-induced proinflammatory factors IL-1β, IL-6, TNF-α and NOS2. These findings indicate that Ctl could be considered as a possible candidate for the development of new antimicrobials strategies in the treatment of myocarditis. Interestingly, L-enantiomeric Ctl showed remarkable properties in strengthening the anti-inflammatory and anti-oxidant effects on cardiomyocytes.
Publication Date: 2021-02-27
Journal: International immunopharmacology

genes involved(28)

Exercise alleviates symptoms of CNS lupus.
Systemic lupus erythematosus (lupus) is a global health problem where 20-80% patients display cognitive problems and central nervous system (CNS) dysfunction. Early diagnosis and treatment of lupus remains a clinical challenge. Exercise improves experimental lupus nephritis. However, the effects of exercise in CNS lupus remains unknown. This study investigates the effects of controlled exercise (CE) that consisted of treadmill walking (5 m/min for 10 min everyday) on experimental CNS lupus using the well-established mouse model, MRL/lpr mice. The MRL/lpr mice were subjected to CE from 8 weeks (preclinical) to 16 weeks (disease). Multiplex gene expression analysis revealed significant upregulation of genes involved in neurite growth, proliferation and synaptic plasticity, and a decrease in inflammatory genes including complement proteins, NFkB, chemokines and cytokines in exercised mice compared to the unmanipulated, age-matched controls. The loss of blood-brain barrier integrity, astrogliosis and edema seen in MRL/lpr mice were reduced with exercise. Exercised mice performed better in behavioral assessments such as open field, nesting, and tail suspension test. For the first time our results show that a supervised, well-regulated and controlled exercise regimen alleviates CNS lupus and could potentially serve as an intervention strategy to improve the quality of life. Exercise could also serve as an adjunct therapy for lupus and other neuroinflammatory diseases, thereby reducing the need for the current therapies with toxic side effects. The validity of the findings and a safe exercise regimen needs to be established by additional studies in patients.
Publication Date: 2021-04-15
Journal: Brain research

cells nfkb(23)

Somatostatin receptor 2 is highly sensitive and specific for Epstein-Barr virus-associated nasopharyngeal carcinoma.
Viruses are known drivers of head and neck squamous cell carcinomas (HNSCC), particularly Epstein-Barr virus (EBV) and human papillomavirus (HPV). Both EBV-positive nasopharyngeal carcinoma (EBVNPC) and HPV-positive oropharyngeal SCC (OPSCC) can have overlapping histomorphology and molecular signatures, including nuclear factor kappa-light-chain-enhancer of activated B cells (NFKB) pathway mutations. A recent study showed that NFKB activation in EBVNPC drives somatostatin receptor 2 (SSTR2) expression that is detectable by immunohistochemistry and by imaging with 68-Gadolinium-DOTA-peptide radioconjugate. However, whether a similar NFKB-SSTR2 signaling mechanism exists for other virus-positive HNSCC, namely HPV-positive sinonasal carcinomas and OPSCC, remains unclear. Here we examined SSTR2 expression in a cohort of EBV-positive, HPV-positive, and virus-negative HNSCC with immunohistochemistry. SSTR2 immunohistochemistry was performed on our cohort of primary and/or metastatic EBVNPC, HPV-positive sinonasal SCC, OPSCC, HPV-negative sinonasal and oral cavity SCC, and benign tonsil and adenoid tissue. For SSTR2 staining, the extent was categorized as focal, multifocal, or diffuse, and the intensity was categorized as weak, moderate, or strong. Multifocal/diffuse SSTR2 staining of any intensity was considered positive. Among primary, recurrent, and/or undifferentiated NPC, 90% showed multifocal to diffuse strong SSTR2 expression. One HPV-positive sinonasal carcinoma showed patchy SSTR2 staining. None of the remaining HPV-positive sinonasal carcinomas, OPSCC, or oral cavity HNSCC showed significant SSTR2 staining. Overall, SSTR2 is highly sensitive and specific for EBVNPC and could represent a surrogate biomarker. Among HNSCC assessed here, we recommend testing primary NPC for SSTR2 because of its relevance for diagnosis, associated imaging modalities, and its therapeutic implications for patient care.
Publication Date: 2021-08-21
Journal: Human pathology

expression levels(21)

SPIB acts as a tumor suppressor by activating the NFkB and JNK signaling pathways through MAP4K1 in colorectal cancer cells.
Spi-B transcription factor (SPIB) is a member of the E-twenty-six (ETS) transcription factor family. Previous studies have shown that the expression of SPIB is downregulated in human colorectal cancer tissues. The purpose of our study was to explore the biological function and related mechanism of SPIB in colorectal cancer cells. Our study found that SPIB could inhibit the proliferation, migration and invasion of CRC cells; inhibit angiogenesis; and induce CRC cells cycle arrest in G2/M phase and promote the apoptosis of CRC cells. We also found that compared with the control group, the 50% inhibitory concentration (IC50) values of oxaliplatin and 5-FU in the SPIB overexpression group were significantly reduced. Western blot results showed that the overexpression of SPIB upregulated cleaved-PARP(c-PARP), nuclear factor kB p65 (NFkB p65), phospho-NFkB p65 (p-NFkB P65), JNK1, and C-Jun protein expression levels compared with the control group. The silence of SPIB downregulated c-PARP, NFκB p65, p-NFκB p65, JNK1, and C-Jun protein expression levels. A dual-luciferase reporter assay showed that SPIB could activate the promoter of MAP4K1 and enhance the expression of MAP4K1. After silencing MAP4K1, the protein expression levels of c-PARP, NFkB P65, p-NFkB P65, JNK1, and C-Jun were downregulated. In summary, we found that SPIB is a tumor suppressor in colorectal cancer cells and that SPIB sensitizes colorectal cancer cells to oxaliplatin and 5-FU, SPIB exerts its anti-colorectal cancer effect by activating the NFkB and JNK signaling pathways through MAP4K1. The above findings may provide a reference for new molecular markers and therapeutic targets for CRC.
Publication Date: 2021-09-17
Journal: Cellular signalling

nfkb expression(20)

Protective effects of Glycyrrhiza glabra supplementation against methotrexate-induced hepato-renal damage in rats: An experimental approach.
In traditional medicine, Glycyrrhiza glabra, commonly known as liquorice, is known to possess promising pharmacological properties including anti-oxidative, anti-inflammatory, gastro, hepato and nephro-protective activities. The present study investigated the protective effects of Glycyrrhiza glabra rhizome extract (GGE) on MTX-induced hepato-renal damage in Wistar albino rats. Rats were pre-treated with GGE (100, 200 or 400 mg/kg) from day 1 to 15 and administered MTX (20 mg/kg) on day 4. Methotrexate-induced hepato-renal damage was assessed by serum toxicity biomarkers (AST, ALT, BUN and creatinine), oxidative stress estimation (MDA, GSH, SOD, CAT, peroxidase and glutathione reductase), interleukins profiling (TNF-α, IL-1β, IL-6 and IL-12), tissue histopathology and immunohistochemical (caspase-3 and NFkB) examination. MTX induced hepato-renal damage resulted in elevated serum levels of AST, ALT, BUN and creatinine, increased pro-inflammatory cytokines concentration and accumulation of MDA and reduced levels of GSH, SOD, CAT, peroxidase and glutathione reductase. Conversely, co-treatment with GGE dose-dependently ameliorated oxidative stress, serum interleukins, hepato-renal toxicity biomarkers (p < 0.001), preserved tissue architecture and downregulated both caspase-3 and NFkB expression in hepato-renal tissue. The above results suggested that GGE can alleviate MTX-induced hepato-renal damage by decreasing oxidative stress and suppressing the ensuing activation of pro-apoptotic and pro-inflammatory pathways.
Publication Date: 2020-08-02
Journal: Journal of ethnopharmacology

kappa-b nfkb(14)

Prolonged saturated, but not monounsaturated, high-fat feeding provokes anxiodepressive-like behaviors in female mice despite similar metabolic consequences.
Obesity significantly increases the risk for anxiety and depression. Our group has recently demonstrated a role for nucleus accumbens (NAc) pro-inflammatory nuclear factor kappa-B (NFkB) signaling in the development of anxiodepressive-like behaviors by diet-induced obesity in male mice. The NAc is a brain region involved in goal-oriented behavior and mood regulation whose functions are critical to hedonic feeding and motivation. While the incidence of depression and anxiety disorders is significantly higher in women than in men, the use of female animal models in psychiatric research remains limited. We set out to investigate the impact of chronic intake of saturated and monounsaturated high-fat diets (HFD) on energy metabolism and on anxiety- and despair-like behaviors in female mice and to ascertain the contribution of NAc NFkB-mediated inflammation herein. Adult C57Bl6N female mice were fed either a saturated HFD, an isocaloric monounsaturated HFD or a control low-fat diet for 24 weeks, after which metabolic profiling and behavioral testing for anxiodepressive-like behaviors were conducted. Plasma was collected at time of sacrifice for quantification of leptin, inflammatory markers as well as 17 β-estradiol levels and brains were harvested to analyze NAc expression of pro-inflammatory genes and estrogen-signaling molecules. In another group of female mice placed on the saturated HFD or the control diet for 24 weeks, we performed adenoviral-mediated invalidation of the NFkB signaling pathway in the NAc prior to behavioral testing. While both HFDs provoked obesity and metabolic impairments, only the saturated HFD triggered anxiodepressive-like behaviors and caused marked elevations in plasma estrogen. This saturated HFD-specific behavioral phenotype could not be explained by NAc inflammation alone and was unaffected by NAc invalidation of the NFkB signaling pathway. Instead, we found changes in the expression of estrogen signaling markers. Such results diverge from the inflammatory mechanisms underlying diet- and obesity-induced metabolic dysfunction and anxiodepressive-like behavior onset in male mice and call attention to the role of estrogen signaling in diet-related anxiodepressive-like phenotypes in female mice.
Publication Date: 2021-10-01
Journal: Brain, behavior, & immunity - health

nfkb nuclear(13)

Nuclear localization dictates hepatocarcinogenesis suppression by glycine N-methyltransferase.
GNMT (glycine N-methyltransferase) is a tumor suppressor gene, but the mechanisms mediating its suppressive activity are not entirely known. We investigated the oncosuppressive mechanisms of GNMT in human hepatocellular carcinoma (HCC). GNMT mRNA and protein levels were evaluated by quantitative RT-PCR and immunoblotting. GNMT effect in HCC cell lines was modulated through GNMT cDNA induced overexpression or anti-GNMT siRNA transfection. GNMT was expressed at low level in human HCCs with a better prognosis (HCCB) while it was almost absent in fast-growing tumors (HCCP). In HCCB, the nuclear localization of the GNMT protein was much more pronounced than in HCCP. In Huh7 and HepG2 cell lines, GNMT forced expression inhibited the proliferation and promoted apoptosis. At the molecular level, GNMT overexpression inhibited the expression of CYP1A (Cytochrome p450, aromatic compound-inducible), PREX2 (Phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 2), PARP1 [Poly (ADP-ribose) polymerase 1], and NFKB (nuclear factor-kB) genes. By chromatin immunoprecipitation, we found GNMT binding to the promoters of CYP1A1, PREX2, PARP1, and NFKB genes resulting in their strong inhibition. These genes are implicated in hepatocarcinogenesis, and are involved in the GNMT oncosuppressive action. Overall, the present data indicate that GNMT exerts a multifaceted suppressive action by interacting with various cancer-related genes and inhibiting their expression.
Publication Date: 2021-10-15
Journal: Translational oncology

beta nfkb(12)

Role of HMGB1 signaling in the inflammatory process in diabetic retinopathy.
High mobility group box 1 (HMGB1) is a key player in retinal inflammation. HMGB1 is a danger associated protein pattern receptor which can sense high glucose as a stressor. Increased HMGB1 levels have been found in patients with late stage diabetic retinopathy. HMGB1 can bind toll-like receptor 4 (TLR4) and the receptor for advanced glycation end-products (RAGE), leading to increased inflammation commonly through nuclear factor kappa beta (NFkB). Because diabetic patients have been found to have increased HMGB1 and RAGE levels, as well as polymorphisms of TLR4, a number of investigations have focused on inhibition of these pathways in the diabetic retina. Work in diabetic animal models and cell culture have demonstrated a number of factors that can inhibit HMGB1/TLR4/RAGE signaling. This regulation offers potential new avenues for therapeutic development. This review is focused on HMGB1 signaling and downstream pathways leading to inflammation in the diabetic retina.
Publication Date: 2020-06-05
Journal: Cellular signalling

kinase mapk(12)

Nickel toxicity in P. lividus embryos: Dose dependent effects and gene expression analysis.
Many industrial activities release Nickel (Ni) in the environment with harmful effects for terrestrial and marine organisms. Despite many studies on the mechanisms of Ni toxicity are available, the understanding about its toxic effects on marine organisms is more limited. We used Paracentrotus lividus as a model to analyze the effects on the stress pathways in embryos continuously exposed to different Ni doses, ranging from 0.03 to 0.5 mM. We deeply examined the altered embryonic morphologies at 24 and 48 h after Ni exposure. Some different phenotypes have been classified, showing alterations at the expenses of the dorso-ventral axis as well as the skeleton and/or the pigment cells. At the lowest dose used, Ni mainly induced a multi-spicule phenotype observed at 24 h after treatment. On the contrary, at the highest dose of Ni (0.5 mM), 90% of embryos showed no skeleton and no pigment cells. Therefore, we focused on this dose to study protein and gene expression patterns at 24 and 48 h after exposure. Among the proteins analyzed, i.e. p38MAPK, Grp78 and Mn-SOD, only p38MAPK was induced by Ni treatment. Moreover, we analyzed the mRNA profiles of a pool of genes that are involved in stress response and in development mechanisms, i.e. the transcription factors Pl-NFkB and Pl-FOXO; a marker of DNA repair, Pl-XPB/ERCC3; a mitogen-activated protein kinase (MAPK), Pl-p38; an ER stress gene, Pl-grp78; an adapter protein, Pl-14-3-3ε; two markers of pigment cells, Pl-PKS1 and Pl-gcm. The spatial expression of mesenchymal marker genes has been evaluated in Ni-treated embryos at both 24 and 48 h after exposure. Our results indicated that Ni acts at several levels in P. lividus sea urchin, by affecting embryo development, influencing the embryonic immune response and activating stress response pathways to counteract the suffered injury and to promote embryos surviving.
Publication Date: 2018-05-19
Journal: Marine environmental research

nfkb activation(10)

Endogenous muscle atrophy F-box is involved in the development of cardiac rupture after myocardial infarction.
Muscle atrophy F-box (MAFbx/atrogin-1), an E3 ubiquitin ligase, is a crucial mediator of skeletal muscle atrophy and cardiac hypertrophy in response to pressure overload and exercise. The role of MAFbx in the regulation of cardiac remodeling after myocardial infarction (MI) remains unclear. Permanent coronary ligation of the left coronary artery was performed on MAFbx knockout (KO) and wild-type (WT) mice and MAFbx expression in the WT mice was shown to be significantly increased in the left ventricles after MI. The mortality rate due to post-MI cardiac rupture was significantly decreased in MAFbx KO mice compared to that in the WT mice. DNA microarray and mRNA expression analyses revealed that the upregulation of genes involved in inflammatory processes and cell motility of leukocytes and neutrophils, including Mmp9, Il1b, Cxcl2, and Nlrp3, was significantly attenuated in MAFbx KO mice 1 day after MI. MAFbx downregulation inhibited nuclear factor-κB (Nfkb) activation after MI. Flow cytometry results demonstrated that the myocardial infiltration of neutrophils was suppressed in MAFbx KO mice 1 day after MI. Nlrp3 and Il1b protein levels were decreased in MAFbx KO mice compared with those in the WT mice. MAFbx downregulation significantly attenuated Tnfa-induced Cxcl2, Il1b, and Nlrp3 expression in cardiomyocytes. We conclude that MAFbx plays an important role in the mediation of excessive inflammation, including neutrophil infiltration, inflammasome formation, and production of proinflammatory cytokines through the activation of Nfkb, promoting cardiac rupture after MI.
Publication Date: 2018-11-09
Journal: Journal of molecular and cellular cardiology

nfkb p65(9)

Triptolide protects podocytes from TGF-β-induced injury by preventing miR-30 downregulation.
Triptolide is known to have a strong anti-proteinuric effect through direct protection of podocytes from injury and is used to treat glomerular diseases. However, the mechanism underlying its protective effect on podocytes remains elusive. MiR-30 family has recently been shown to be essential for structural and functional homeostasis of podocytes but is downregulated by injurious factors, leading to podocyte injury. In the present study, we explore whether Triptolide protects podocytes through preventing miR-30 downregulation. Since TGF-β signaling is a critical mediator in various podocyte injuries and we previously found that TGF-β induces podocyte injury through downregulating miR-30s, we thus used TGF-β-induced podocyte injury model to address the issue. We found that Triptolide is capable of protecting cultured podocytes from TGF-β-induced cytoskeletal injury and apoptosis, as expected. Consistently, Triptolide also prevented TGF-β-induced signaling activation of MAPK p38, NFkB (p65) and calcineurin/NFATC3, which are known to be downstream mediators of podocyte injury. Meanwhile, Triptolide was found to completely prevent TGF-β-induced miR-30 downregulation, indicating that Triptolide protects podocytes by sustaining miR-30 expression. Mechanistically, we found that Triptolide can prevent TGF-β-induced Smad2/3 phosphorylation/activation, which likely underlies miR-30 restoration by Triptolide. We also performed
Publication Date: 2017-12-09
Journal: American journal of translational research

tnf-α il-1β(7)

Ubiquitous plasticizer, Di-(2-ethylhexyl) phthalate enhances existing inflammatory profile in monocytes of children with autism.
Genetic as well as environmental factors are believed to play a significant role in the pathogenesis and progression of autism spectrum disorder (ASD). Phthalates are ubiquitous environmental contaminants as they are used plasticizers in several household/industrial products such as vinyl flooring, plastic toys, and cosmetic products. One of the plasticizers that is quite prevalent in these products is di-2-ethylhexyl phthalate (DEHP) which can cause human exposure via dermal/inhalation/ingestion routes. DEHP and its metabolites are associated with behavioral dysregulations and reported to be increased in systemic circulation of ASD children. DEHP is reported to cause upregulation of several inflammatory cytokines in different cells/tissues, however its role in inflammatory signaling of ASD monocytes has not been investigated earlier. Therefore, this study evaluated the effects of DEHP (at 5 μM final concentration for 24 h) on inflammatory profile (NFkB, STAT3, IL-6, TNF-α, IL-1β) in monocytes of ASD subjects and typically developing control (TDC) children. Our data show that DEHP upregulates NFkB/STAT3 expression which is associated with increased inflammatory profile in monocytes of ASD and TDC subjects, however its effect is much greater in magnitude in the former group. This was confirmed by utilization of NFkB inhibitor, PDTC and STAT3 inhibitor, Stattic which caused reduction in inflammatory cytokines from DEHP-treated monocytes in ASD group. In short, DEHP causes further elevation in inflammatory signaling in ASD monocytes which could be due to existing inflammation in this group. These data suggest that use of plasticizers such as DEHP should be minimized in order to avoid their potential effects on immune dysfunction associated with ASD.
Publication Date: 2020-09-30
Journal: Toxicology

il-6 tnf-α(7)

Magnesium acetyltaurate protects against endothelin-1 induced RGC loss by reducing neuroinflammation in Sprague dawley rats.
Endothelin-1 (ET-1), a potent vasoconstrictor, plays a significant role in the pathophysiology of ocular conditions like glaucoma. Glaucoma is characterized by apoptotic loss of retinal ganglion cells (RGCs) and loss of visual fields and is a leading cause of irreversible blindness. In glaucomatous eyes, retinal ischemia causes release of pro-inflammatory mediators such as interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α and promotes activation of transcription factors such as nuclear factor kappa B (NFKB) and c-Jun. Magnesium acetyltaurate (MgAT) has previously been shown to protect against ET-1 induced retinal and optic nerve damage. Current study investigated the mechanisms underlying these effects of MgAT, which so far remain unknown. Sprague dawley rats were intravitreally injected with ET-1 with or without pretreatment with MgAT. Seven days post-injection, retinal expression of IL-1β, IL-6, TNF-α, NFKB and c-Jun protein and genes was determined using multiplex assay, Western blot and PCR. Animals were subjected to retrograde labeling of RGCs to determine the extent of RGC survival. RGC survival was also examined using Brn3A staining. Furthermore, visual functions of rats were determined using Morris water maze. It was observed that pre-treatment with MgAT protects against ET-1 induced increase in the retinal expression of IL-1β, IL-6 and TNF-α proteins and genes. It also protected against ET-1 induced activation of NFKB and c-Jun. These effects of MgAT were associated with greater RGC survival and preservation of visual functions in rats. In conclusion, MgAT prevents ET-1 induced RGC loss and loss of visual functions by suppressing neuroinflammatory reaction in rat retinas.
Publication Date: 2020-03-12
Journal: Experimental eye research

inflammation nfkb(7)

Effect of Lipopolysaccharides (LPS) and Lipoteichoic Acid (LTA) on the Inflammatory Response in Rumen Epithelial Cells (REC) and the Impact of LPS on Claw Explants.
Endotoxins play a crucial role in ruminant health due to their deleterious effects on animal health. The study aimed to evaluate whether LPS and LTA can induce an inflammatory response in rumen epithelial cells. For this purpose, epithelial cells isolated from rumen tissue (REC) were stimulated with LPS and LTA for 1, 2, 4, and 24 h. Thereafter, the expression of selected genes of the LPS and LTA pathway and inflammatory response were evaluated. Furthermore, it was assessed whether LPS affects inflammatory response and structural integrity of claw explants. Therefore, claw explants were incubated with LPS for 4 h to assess the expression of selected genes and for 24 h to evaluate tissue integrity via separation force. LPS strongly affected the expression of genes related to inflammation (NFkB, TNF-α, IL1B, IL6, CXCL8, MMP9) in REC. LTA induced a delayed and weaker inflammatory response than LPS. In claw explants, LPS affected tissue integrity, as there was a concentration-dependent decrease of separation force. Incubation time had a strong effect on inflammatory genes in claw explants. Our data suggest that endotoxins can induce a local inflammatory response in the rumen epithelium. Furthermore, translocation of LPS might negatively impact claw health.
Publication Date: 2021-08-08
Journal: Animals : an open access journal from MDPI

95 ci(3)

Polymorphisms in the NFkB, TNF-alpha, IL-1beta, and IL-18 pathways are associated with response to anti-TNF therapy in Danish patients with inflammatory bowel disease.
Anti-tumor necrosis factor-α (TNF-α) is used for the treatment of severe cases of IBD, including Crohn's disease (CD) and ulcerative colitis (UC). However, one-third of the patients do not respond to the treatment. We have previously investigated whether single nucleotide polymorphisms (SNPs) in genes involved in inflammation were associated with response to anti-TNF therapy among patients with CD or UC. A new cohort of patients was established for replication of the previous findings and to identify new SNPs associated with anti-TNF response. Fifty-three SNPs assessed previously in cohort 1 (482 CD and 256 UC patients) were genotyped in cohort 2 (587 CD and 458 UC patients). The results were analysed using logistic regression (adjusted for age and gender). Ten SNPs were associated with anti-TNF response either among patients with CD (TNFRSF1A(rs4149570) (OR: 1.92, 95% CI: 1.02-3.60, P = 0.04), IL18(rs187238) (OR: 1.35, 95% CI: 1.00-1.82, P = 0.05), and JAK2(rs12343867) (OR: 1.35, 95% CI: 1.02-1.78, P = 0.03)), UC (TLR2(rs11938228) (OR: 0.55, 95% CI: 0.33-0.92, P = 0.02), TLR4(rs5030728) (OR: 2.23, 95% CI: 1.24-4.01, P = 0.01) and (rs1554973) (OR: 0.49, 95% CI: 0.27-0.90, P = 0.02), NFKBIA(rs696) (OR: 1.45, 95% CI: 1.06-2.00, P = 0.02), and NLRP3(rs4612666) (OR: 0.63, 95% CI: 0.44-0.91, P = 0.01)) or in the combined cohort of patient with CD and UC (IBD) (TLR4(rs5030728) (OR: 1.46, 95% CI: 1.01-2.11, P = 0.04) and (rs1554973)(OR: 0.80, 95% CI: 0.65-0.98, P = 0.03), NFKBIA(rs696) (OR: 1.25, 95% CI: 1.01-1.54, P = 0.04), NLRP3(rs4612666) (OR: 0.73, 95% CI: 0.57-0.95, P = 0.02), IL1RN(rs4251961) (OR: 0.81, 95% CI: 0.66-1.00, P = 0.05), IL18(rs1946518) (OR: 1.24, 95% CI: 1.01-1.53, P = 0.04), and JAK2(rs12343867) (OR: 1.24, 95% CI: 1.01-1.53, P = 0.04)). The results support that polymorphisms in genes involved in the regulation of the NFκB pathway (TLR2, TLR4, and NFKBIA), the TNF-α signalling pathway (TNFRSF1A), and other cytokine pathways (NLRP3, IL1RN, IL18, and JAK2) were associated with response to anti-TNF therapy. Our multi-SNP model predicted response rate of more than 82% (in 9% of the CD patients) and 75% (in 15% of the UC patients), compared to 71% and 64% in all CD and UC patients, respectively. More studies are warranted to predict response for use in the clinic.
Publication Date: 2019-02-28
Journal: Alimentary pharmacology & therapeutics


CD40 Cross-Linking Induces Migration of Renal Tumor Cell through Nuclear Factor of Activated T Cells (NFAT) Activation.
CD40 crosslinking plays an important role in regulating cell migration, adhesion and proliferation in renal cell carcinoma (RCC). CD40/CD40L interaction on RCC cells activates different intracellular pathways but the molecular mechanisms leading to cell scattering are not yet clearly defined. Aim of our study was to investigate the main intracellular pathways activated by CD40 ligation and their specific involvement in RCC cell migration. CD40 ligation increased the phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun NH (2)-terminal kinase (JNK) and p38 MAPK. Furthermore, CD40 crosslinking activated different transcriptional factors on RCC cell lines: AP-1, NFkB and some members of the Nuclear Factor of Activated T cells (NFAT) family. Interestingly, the specific inhibition of NFAT factors by cyclosporine A, completely blocked RCC cell motility induced by CD40 ligation. In tumor tissue, we observed a higher expression of NFAT factors and in particular an increased activation and nuclear migration of NFATc4 on RCC tumor tissues belonging to patients that developed metastases when compared to those who did not. Moreover, CD40-CD40L interaction induced a cytoskeleton reorganization and increased the expression of integrin β1 on RCC cell lines, and this effect was reversed by cyclosporine A and NFAT inhibition. These data suggest that CD40 ligation induces the activation of different intracellular signaling pathways, in particular the NFATs factors, that could represent a potential therapeutic target in the setting of patients with metastatic RCC.
Publication Date: 2021-08-28
Journal: International journal of molecular sciences


Doxorubicin induces an alarmin-like TLR4-dependent autocrine/paracrine action of Nucleophosmin in human cardiac mesenchymal progenitor cells.
Doxorubicin (Dox) is an anti-cancer anthracycline drug that causes double-stranded DNA breaks. It is highly effective against several types of tumours; however, it also has adverse effects on regenerative populations of normal cells, such as human cardiac mesenchymal progenitor cells (hCmPCs), and its clinical use is limited by cardiotoxicity. Another known effect of Dox is nucleolar disruption, which triggers the ubiquitously expressed nucleolar phosphoprotein Nucleophosmin (NPM) to be released from the nucleolus into the cell, where it participates in the orchestration of cellular stress responses. NPM has also been observed in the extracellular space in response to different stress stimuli; however, the mechanism behind this and its functional implications are as yet largely unexplored. The aim of this study was to establish whether Dox could elicit NPM secretion in the extracellular space and to elucidate the mechanism of secretion and the effect of extracellular NPM on hCmPCs. We found that following the double-strand break formation in hCmPCs caused by Dox, NPM was rapidly secreted in the extracellular space by an active mechanism, in the absence of either apoptosis or necrosis. Extracellular release of NPM was similarly seen in response to ultraviolet radiation (UV). Furthermore, we observed an increase of NPM levels in the plasma of Dox-treated mice; thus, NPM release also occurred in vivo. The treatment of hCmPCs with extracellular recombinant NPM induced a decrease of cell proliferation and a response mediated through the Toll-like receptor (TLR)4. We demonstrated that NPM binds to TLR4, and via TLR4, and nuclear factor kappa B (NFkB) activation/nuclear translocation, exerts proinflammatory functions by inducing IL-6 and COX-2 gene expression. Finally, we found that in hCmPCs, NPM secretion could be driven by an autophagy-dependent unconventional mechanism that requires TLR4, since TLR4 inhibition dramatically reduced Dox-induced secretion. We hypothesise that the extracellular release of NPM could be a general response to DNA damage since it can be elicited by either a chemical agent such as Dox or a physical genotoxic stressor such as UV radiation. Following genotoxic stress, NPM acts similarly to an alarmin in hCmPCs, being rapidly secreted and promoting cell cycle arrest and a TLR4/NFκB-dependent inflammatory response.
Publication Date: 2021-06-18
Journal: BMC biology


Role of ITK signaling in acute kidney injury in mice: Amelioration of acute kidney injury associated clinical parameters and attenuation of inflammatory transcription factor signaling in CD4+ T cells by ITK inhibition.
Acute kidney injury (AKI) is a world-wide health problem and linked with increased risk of morbidity/mortality in hospitalized patients and its incidence has been on the rise in the last few decades. AKI is characterized by renal tubular injury which results from interactions between bacterial products and host immune responses which manifests as a rapid deterioration in renal function. Immune system dysfunction induced by sepsis plays a crucial role in AKI through activation of multiple immune cells of both innate and adaptive origin. These cells release pro-inflammatory cytokines such as IL-6, IL-17A, IFN-γ, and reactive oxygen metabolites. Adaptive immune cells, especially T cells also participate in the amplification of renal inflammation through release of pro-inflammatory cytokines such as IL-17A, IFN-γ, TNF-α, and IL-10. Non-receptor protein tyrosine kinases such as ITK play crucial role in T cell through modulation of key downstream molecules such as PLCγ, STAT3, NFkB, NFATc1, and p-38MAPK. However, it has not been explored in CD4+ T cells during AKI. Therefore, this study investigated the effect of ITK inhibitor on AKI linked clinical parameters (serum BUN, creatinine and renal histopathology), downstream signaling molecules in CD4+ T cells (PLCγ, STAT3, NFkB, and NFATc1), Th1/Th2/Treg cell markers (IL-17A, TNF-α, and IL-10), and neutrophil-mediated oxidative inflammation (MPO/carbonyl/nitrotyrosine formation) in mice. Our data exhibit elevated p-ITK levels in CD4+ T cells which is associated with renal dysfunction and elevated Th1/Th17/neutrophilic responses. Blockade of ITK signaling resulted in ameliorated of AKI associated biochemical; parameters through downregulation in transcription signaling in CD4+ T cells and Th1/Th17 immune responses. Therefore, this report suggests that ITK inhibition could be an effective strategy to halt renal dysfunction associated with AKI.
Publication Date: 2021-08-09
Journal: International immunopharmacology


The inhibition of NFкB signaling and inflammatory response as a strategy for blunting bile acid-induced hepatic and renal toxicity.
The cholestatic liver injury could occur in response to a variety of diseases or xenobiotics. Although cholestasis primarily affects liver function, it has been well-known that other organs such as the kidney could be influenced in cholestatic patients. Severe cholestasis could lead to tissue fibrosis and organ failure. Unfortunately, there is no specific therapeutic option against cholestasis-induced organ injury. Hence, finding the mechanism of organ injury during cholestasis could lead to therapeutic options against this complication. The accumulation of potentially cytotoxic compounds such as hydrophobic bile acids is the most suspected mechanism involved in the pathogenesis of cholestasis-induced organ injury. A plethora of evidence indicates a role for the inflammatory response in the pathogenesis of several human diseases. Here, the role of nuclear factor-kB (NFkB)-mediated inflammatory response is investigated in an animal model of cholestasis. Bile duct ligated (BDL) animals were treated with sulfasalazine (SSLZ, 10 and 100 mg/kg, i.p) as a potent inhibitor of NFkB signaling. The NFkB proteins family activity in the liver and kidney, serum and tissue levels of pro-inflammatory cytokines, tissue biomarkers of oxidative stress, serum markers of organ injury, and the liver and kidney histopathological alterations and fibrotic changes. The oxidative stress-mediated inflammatory-related indices were monitored in the kidney and liver at scheduled time intervals (3, 7, and 14 days after BDL operation). Significant increase in serum and urine markers of organ injury, besides changes in biomarkers of oxidative stress and tissue histopathology, were evident in the liver and kidney of BDL animals. The activity of NFkB proteins (p65, p50, p52, c-Rel, and RelB) was significantly increased in the liver and kidney of cholestatic animals. Serum and tissue levels of pro-inflammatory cytokines (IL-1β, IL-2, IL-6, IL-7, IL-12, IL-17, IL-18, IL-23, TNF-α, and INF-γ) were also higher than sham-operated animals. Moreover, TGF- β, α-SMA, and tissue fibrosis (Trichrome stain) were evident in cholestatic animals' liver and kidneys. It was found that SSLZ (10 and 100 mg/kg/day, i.p) alleviated cholestasis-induced hepatic and renal injury. The effect of SSLZ on NFkB signaling and suppression of pro-inflammatory cytokines could play a significant role in its protective role in cholestasis. Based on these data, NFkB signaling could receive special attention to develop therapeutic options to blunt cholestasis-induced organ injury.
Publication Date: 2021-06-06
Journal: Toxicology letters


Infrared light therapy relieves TLR-4 dependent hyper-inflammation of the type induced by COVID-19.
The leading cause of mortality from COVID-19 infection is respiratory distress due to an exaggerated host immune response, resulting in hyper-inflammation and ensuing cytokine storms in the lungs. Current drug-based therapies are of limited efficacy, costly, and have potential negative side effects. By contrast, photobiomodulation therapy, which involves periodic brief exposure to red or infrared light, is a noninvasive, safe, and affordable method that is currently being used to treat a wide range of diseases with underlying inflammatory conditions. Here, we show that exposure to two 10-min, high-intensity periods per day of infrared light causes a marked reduction in the TLR-4 dependent inflammatory response pathway, which has been implicated in the onset of cytokine storms in COVID-19 patients. Infrared light exposure resulted in a significant decline in NFkB and AP1 activity as measured by the reporter gene assay; decreased expression of inflammatory marker genes IL-6, IL-8, TNF-alpha, INF-alpha, and INF-beta as determined by qPCR gene expression assay; and an 80% decline in secreted cytokine IL6 as measured by ELISA assay in cultured human cells. All of these changes occurred after only 48 hours of treatment. We suggest that an underlying cellular mechanism involving modulation of ROS may downregulate the host immune response after Infrared Light exposure, leading to decrease in inflammation. We further discuss technical considerations involving light sources and exposure conditions to put these observations into potential clinical use to treat COVID-19 induced mortality.
Publication Date: 2021-09-24
Journal: Communicative & integrative biology


WBP2 promotes BTRC mRNA stability to drive migration and invasion in triple-negative breast cancer via NF-κB activation.
WW-domain-binding protein 2 (WBP2) is an oncogene that drives breast carcinogenesis through regulating Wnt, estrogen receptor (ER), and Hippo signaling. Recent studies have identified neoteric modes of action of WBP2 other than its widely recognized function as a transcriptional coactivator. Here, we identified a previously unexplored role of WBP2 in inflammatory signaling in breast cancer via an integrated proteogenomic analysis of The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA BRCA) dataset. WBP2 was shown to enhance the migration and invasion in triple-negative breast cancer (TNBC) cells especially under tumor necrosis factor alpha (TNF-α) stimulation. Molecularly, WBP2 potentiates TNF-α-induced nuclear factor kappa B (NF-κB) transcriptional activity and nuclear localization through aggrandizing ubiquitin-mediated proteasomal degradation of its upstream inhibitor, NF-κB inhibitor alpha (NFKBIA; also known as IκBα). We further demonstrate that WBP2 induces mRNA stability of beta-transducin repeat-containing E3 ubiquitin protein ligase (BTRC), which targets IκBα for ubiquitination and degradation. Disruption of IκBα rescued the impaired migratory and invasive phenotypes in WBP2-silenced cells, while loss of BTRC ameliorated WBP2-driven migration and invasion. Clinically, the WBP2-BTRC-IκBα signaling axis correlates with poorer prognosis in breast cancer patients. Our findings reveal a pivotal mechanism of WBP2 in modulating BTRC-IκBα-NF-κB pathway to promote TNBC aggressiveness.
Publication Date: 2021-07-02
Journal: Molecular oncology


Effects of Granulocyte Macrophage Colony-Stimulating Factor Inhibition on the Skin/Nerve Cell Model In Vitro.
The present study is based on the concept of neuro-aging and how it may affect surrounding skin cells. It has been shown that many factors play a significant role in skin homeostasis by interfering with various cytokines, either through activation or inhibition. Granulocyte macrophage colony-stimulating factor (GM-CSF) is generally recognized as an inflammatory cytokine, and our previous study has shown its effects on neuronal senescence after ultraviolet (UV) irradiation of skin cells. Following our previous work, this study was performed to investigate the neuroprotective effects of a GM-CSF antagonist, and how it may play an essential role in mediating anti-senescence and anti-inflammatory effects in the keratinocyte/nerve aging model. When human blastoma cells (SH-SY5Y) were treated with 10 ng/ml of GM-CSF, the levels of regulatory RNAs associated with aging, such as matrix metalloproteinase-9 (MMP9), nuclear factor NF-kappa-B p50 subunit (NFKB), inducible nitric oxide synthase (iNOS), and interleukin 1 beta (IL-1β) increased, whereas GM-CSF inhibition caused their expression to decrease. A decrease in the antioxidant, glutathione (GSH) was observed after SH-SY5Y cells were treated with GM-CSF. This study confirms that this GM-CSF antagonist may play an important role in neural senescence, where inhibition may be a new target in the skin/nerve aging model.
Publication Date: 2020-06-06
Journal: The Journal of craniofacial surgery


Proteomic analysis of extracellular vesicles and conditioned medium from human adipose-derived stem/stromal cells and dermal fibroblasts.
Conditioned medium (CM) and extracellular vesicles (EV) from Adipose-derived Stem/stromal cells (ASC) and Dermal fibroblasts (DF) represent promising tools for therapeutic applications. Which one should be preferred is still under debate and no direct comparison of their proteome has been reported yet. Here, we apply quantitative proteomics to explore the protein composition of CM and EV from the two cell types. Data are available via ProteomeXchange (identifier PXD020219). We identified 1977 proteins by LC-MS/MS proteomic analysis. Unsupervised clustering analysis and PCA recognized CM and EV as separate groups. We identified 68 and 201 CM and EV specific factors. CM were enriched in proteins of endoplasmic reticulum, Golgi apparatus and lysosomes, whereas EV contained a large amount of GTPases, ribosome and translation factors. The analysis of ASC and DF secretomes revealed the presence of cell type-specific proteins. ASC-CM and -EV carried factors involved in ECM organization and immunological regulation, respectively. Conversely, DF-CM and -EV were enriched in epithelium development associated factors and -EV in Wnt signaling factors. In conclusion, this analysis provides evidence of a different protein composition between CM and EV and of the presence of cell type-specific bioactive mediators suggesting their specific future use as advanced therapy medicinal products. SIGNIFICANCE: The use of cell secretome presents several advantages over cell therapy such as the lower risks associated to the administration step and the avoidance of any potential risk of malignant transformation. The main secretome preparations consist in concentrated conditioned medium (CM) and extracellular vesicles (EV). Both of them showed well-documented therapeutic potentials. However, it is still not clear in which case it should be better to use one preparation over the other and an exhaustive comparison between their proteome has not been performed yet. The choice of the cell source is another relevant aspect that still needs to be addressed. In order to shed light on these questions we explored the protein composition of CM and EV obtained from Adipose-derived Stem/stromal Cells (ASC) and Dermal Fibroblasts (DF), by a comprehensive quantitative proteomics approach. The analysis showed a clear distinction between CM and EV proteome. CM were enriched in proteins of endoplasmic reticulum, Golgi apparatus and lysosomes, whereas EV contained a large amount of GTPases, ribosome and translation-related factors. Furthermore, the analysis of ASC and DF secretomes revealed specific biological processes for the different cell products. ASC secretome presented factors involved in ECM organization (hyaluronan and glycosaminoglycan metabolism) and immunological regulation (e.g. macrophage and IkB/NFkB signaling regulation), respectively. On the other hand, DF-CM and -EV were both enriched in epithelium development associated factors, whilst DF-CM in proteins involved in cellular processes regulation and -EV in Wnt signaling factors. In conclusion, our study shed a light on the different protein composition of CM and EV of two promising cell types, spanning from basic processes involved in secretion to specific pathways supporting their therapeutic potential and their possible future use as advanced therapy medicinal products.
Publication Date: 2020-12-15
Journal: Journal of proteomics


Gene expression with corresponding pathways analysis in Gaucher disease.
Gaucher disease (GD) caused by mutation in the GBA gene has a wide spectrum of phenotypes. Besides the storage disorder, secondary alteration of various pathways occurs with modification of the expression of many genes. In our work we analysed the expression profile of genes in adult patients with type 1 GD. This study was an observational, cross-sectional analysis of a group of twenty patients with type 1 GD and ten healthy volunteers as a control group. First, on the group of ten persons, microarray gene analysis was performed. Afterwards, significantly regulated genes were selected, and the microarray results were confirmed by real-time PCR on the whole study group. Based on the microarray results in the pathway analysis, we focused on genes related to chemokines, inflammatory processes, endocytosis, autophagy, and apoptosis. Patients with GD demonstrated up-regulation of genes related to NFkB pathway (NFkB, NKkBR SQSTM1), inflammation (IL-1b), endocytosis and autophagy (BCN1, SMAD), genes coding proteins involved in apoptosis (CASP, NFkB, BCL2) as well as genes related to proteasome degradation (PSMD2, PSMB9) and SNARE complex (SNAP, STX). Simultaneously, we showed down-regulation of genes coding proteins of chemokines and their receptors (GNB4, CCL5). The qRT-PCR results confirmed changes in expression of selected genes. Parallel microarray results showed inhibition of genes related to neurones development and survival (NTRK1) and stimulation of gene expression related to neurodegeneration and apoptosis (BCN1, IL1B). The work revealed different pathway activation, especially inflammatory processes followed by autophagy and apoptosis. Our results also pay attention to new pathways leading to disorders of the functioning of the nervous tissue in patients with type 1 GD, which may lead to the development of polyneuropathy and chronic pain. These are clinical symptoms that severely decrease the quality of life in GD patients.
Publication Date: 2021-09-06
Journal: Experimental and molecular pathology