back to the search page

Query Topic: NMN

Query Date:


ec 2 7 7 1(14)

Development of a Bioluminescent High-Throughput Screening Assay for Nicotinamide Mononucleotide Adenylyltransferase (NMNAT).
Nicotinamide mononucleotide adenylyltransferase (NMNAT; EC 2.7.7.1) catalyzes the reversible production of NAD
Publication Date: 2019-10-05
Journal: SLAS discovery : advancing life sciences R & D


nicotinamide adenine dinucleotide(36)

Biological synthesis of nicotinamide mononucleotide.
Nicotinamide mononucleotide (NMN) or Nicotinamide-1-ium-1-β-D-ribofuranoside 5'-phosphate is a nucleotide that can be converted into nicotinamide adenine dinucleotide (NAD) in human cells. NMN has recently attracted great attention because of its potential as an anti-aging drug, leading to great efforts for its effective manufacture. The chemical synthesis of NMN is a challenging task since it is an isomeric compound with a complicated structure. The majority of biological synthetic routes for NMN is through the intermediate phosphoribosyl diphosphate (PRPP), which is further converted to NMN by nicotinamide phosphoribosyltransferase (Nampt). There are various routes for the synthesis of PRPP from simple starting materials such as ribose, adenosine, and xylose, but all of these require the expensive phosphate donor adenosine triphosphate (ATP). Thus, an ATP regeneration system can be included, leading to diminished ATP consumption during the catalytic process. The regulations of enzymes that are not directly involved in the synthesis of NMN are also critical for the production of NMN. The aim of this review is to present an overview of the biological production of NMN with respect to the critical enzymes, reaction conditions, and productivity.
Publication Date: 2021-10-10
Journal: Biotechnology letters


3 4-dihydroxymandelic acid(7)

Relationship between radical intensity and cytotoxic activity of dopamine-related compounds.
Millimolar concentrations of dopamine (DA), norepinephrine (NE), and 3,4-dihydroxyphenylacetic acid (DOPAC) were cytotoxic to human promyelocytic leukemiC HL-60 cells. However, their metabolites (3,4-dihydroxymandelic acid (DOMA), 3-methoxytyramine (MT), normetanephrine (NMN)) and six synthetic derivatives (which have two OCH3 groups replacing two OH groups on catechol backbone) displayed much lower cytotoxic activity. Three active compounds, but not other less potent compounds, produced radicals under alkaline conditions. All active compounds significantly enhanced the decay of ascorbic acid endogenously present in rat brain homogenate, whereas all synthetic derivatives were inactive. Ascorbic acid induced apoptotic cell death in HL-60 cells and the apoptosis induction was significantly reduced by simultaneous addition of (DA). The cytotoxic activity of (DA) was also neutralized by ascorbic acid. These data suggest the possible interaction between (DA) and ascorbic acid.
Publication Date: 1998-06-06
Journal: Anticancer research


3 4-dihydroxyphenylacetic acid(5)

Development of a 6-hydroxychroman-based derivatization reagent: application to the analysis of 5-hydroxytryptamine and catecholamines by using high-performance liquid chromatography with electrochemical detection.
We developed a novel derivatization reagent, (2R)-2,5-dioxopyrrolidin-1-yl-2,5,7,8-tetramethyl-6-(tetrahydro-2H-pyran-2-yloxy)chroman-2-carboxylate (NPCA), for electrochemical (EC) detection in HPLC. NPCA was synthesized from (R)-(+)-6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (alpha-CA), which exhibits intense EC response. NPCA successfully yielded alpha-CA derivatives of primary amines by a two-step derivatization procedure. Following pre-column derivatization with NPCA, a simultaneous determination of alpha-CA derivatives of neuroactive monoamines [dopamine (DA), epinephrine, and 5-hydroxytryptamine (5-HT)], their monoamine oxidase metabolites (3,4-dihydroxyphenylacetic acid, homovanillic acid, and 5-hydroxyindole-3-acetic acid) and their catechol-O-methyltransferase metabolites [3-methoxytyramine (3-MT) and normetanephrine (NMN)] was completely achieved using our HPLC-EC method. Using an HPLC equipped with coulometric electrode-array detection system, the resultant alpha-CA derivatives of NMN, 5-HT, DA and 3-MT showed intense EC responses, that were approximately 1.3, 1.4, 1.1 and 1.4-fold higher than the corresponding native forms, respectively. The detection limits were in the range of approximately 16-60 fmol on column (signal-to-noise ratio 3). The proposed HPLC method was applied to determine 5-HIAA, HVA, alpha-CA-5-HT and alpha-CA-DA in rat urine. As a consequence, these analytes were successfully determined with satisfactory precisions.
Publication Date: 2008-03-05
Journal: Biomedical chromatography : BMC


nmol l p(2)

Diagnostic Accuracy of Salivary Metanephrines in Pheochromocytomas and Paragangliomas.
Measurements of plasma free metanephrines are recommended for diagnosing pheochromocytomas and paragangliomas (PPGL). Metanephrines can be detected in saliva with LC-MS/MS with sufficient analytical sensitivity and precision. Because collecting saliva is noninvasive and less cumbersome than plasma or urine sampling, we assessed the diagnostic accuracy of salivary metanephrines in diagnosing PPGL. This 2-center study included 118 healthy participants (44 men; mean age: 33 years (range: 19--74 years)), 44 patients with PPGL, and 54 patients suspected of PPGL. Metanephrines were quantified in plasma and saliva using LC-MS/MS. Diagnostic accuracy; correlation between plasma and salivary metanephrines; and potential factors influencing salivary metanephrines, including age, sex, and posture during sampling, were assessed. Salivary metanephrines were significantly higher in patients with PPGL compared with healthy participants (metanephrine (MN): 0.19 vs 0.09 nmol/L, P < 0.001; normetanephrine (NMN): 2.90 vs 0.49 nmol/L, P < 0.001). The diagnostic sensitivity and specificity of salivary metanephrines were 89% and 87%, respectively. Diagnostic accuracy of salivary metanephrines was 88%, with an area under the ROC curve of 0.880. We found a significant correlation between plasma and salivary metanephrines (Pearson correlation coefficient: MN, 0.86, P < 0.001; NMN, 0.83, P < 0.001). Salivary NMN concentrations were higher when collected in a seated position compared with supine (P < 0.001) and increased with age (P < 0.001). Salivary metanephrines are a promising tool in the biochemical diagnosis of PPGL. Salivary metanephrines correlate with plasma free metanephrines and are increased in patients with PPGL. At this time, however, salivary metanephrines cannot replace measurement of plasma free metanephrines.
Publication Date: 2021-06-08
Journal: Clinical chemistry


n1-methylnicotinamide nmn(34)

Estimation of aldehyde oxidase activity in vivo from conversion ratio of N1-methylnicotinamide to pyridones, and intraspecies variation of the enzyme activity in rats.
The in vivo conversion ratio of N1-methylnicotinamide (NMN) to N1-methyl-2-pyridone-5-carboxamide (2-PY) and N1-methyl-4-pyridone-3-carboxamide (4-PY) as a parameter for the estimation of aldehyde oxidase level in rats was examined. NMN and its pyridones (2-PY and 4-PY) are usually detected in the urine of rats. When we measured the ratio of the amount of pyridones to the total amount of NMN and pyridones (RP value) in the urine of rats, marked intraspecies variations were observed. The variation in RP value among strains was closely related to the differences of liver aldehyde oxidase activity measured with NMN as a substrate. RP values after administration of NMN to different strains of rats confirmed the existence of strain differences of aldehyde oxidase activity in vivo. We demonstrated that measurements of NMN and its pyridones usually excreted in the urine can be used to predict the in vivo level of aldehyde oxidase.
Publication Date: 2005-11-22
Journal: Drug metabolism and disposition: the biological fate of chemicals


dinucleotide nad(32)

Nicotinamide mononucleotide augments the cytotoxic activity of natural killer cells in young and elderly mice.
Nicotinamide mononucleotide (NMN), a key nicotinamide adenine dinucleotide (NAD
Publication Date: 2021-09-22
Journal: Biomedical research (Tokyo, Japan)


norepinephrine ne(31)

Study of stability and interference for catecholamines and metanephrines, 3-methoxytyramine: key point of an accurate diagnosis for pheochromocytoma and paraganglioma.
Accurate diagnosis of pheochromocytoma and paraganglioma (PPGLs) is highly dependent on the detection of metanephrines and catecholamines. However, the systematic investigation on influencing factors including specimen (plasma or whole blood), anticoagulant, storage conditions, and interference factors need further confirmation. Blood with heparin-lithium or EDTA-K2 were collected, stability of epinephrine (EPI), norepinephrine (NE), dopamine (DA), metanephrine (MN), normetanephrine (NMN), 3-methoxytyramine (3-MT) in whole blood and plasma at room temperature and 4 °C for different storage times, stability of plasma MN, NMN and 3-MT at -20 °C and -80 °C were investigated. Plasma with hemoglobin (1 g/L, 2 g/L, 3 g/L, 4 g/L, 6 g/L), TG (<5 mmol/L, 5-8 mmol/L, >8 mmol/L) were prepared. EPI, NE, DA were prone to degrade at room temperature, samples should be centrifuged at 4 °C. EPI and NE were stable in whole blood at 4 °C for 4 h and in plasma for 2 h. For MN, NMN, 3-MT, plasma can be stable at room temperature and 4 °C for at least 6 h, which is better than whole blood; there was no significant difference when stored at -20 °C and -80 °C for 7 days. Heparin-lithium had a slight advantage over EDTA-K2. EPI, NE, DA should not be performed when Hb > 1 g/L or TG > 5 mmol/L. MN, NMN, 3-MT should not be performed when Hb > 2 g/L, whereas TG had no interference. According to the actual clinical application scenario, this study provided a reliable basis for the accurate diagnosis of PPGLs.
Publication Date: 2021-09-28
Journal: Scandinavian journal of clinical and laboratory investigation


nicotinic acid(28)

Precursor comparisons for the upregulation of nicotinamide adenine dinucleotide. Novel approaches for better aging.
Nicotinamide adenine dinucleotide (NAD) is a coenzyme found in every human cell and regulates a number of systems across multiple cellular compartments and tissue types via an endogenous and exogenous influence. NAD levels are demonstrated to decline with age and therefore measures to counteract the waning of NAD have been devised. A number of NAD precursor candidates such as nicotinamide riboside (NR), nicotinamide mononucleotide (NMN), the reduced form of nicotinamide mononucleotide (NMNH), nicotinic acid (NA) nicotinamide (NAM), and dihydronicotinamide riboside (DNR) increase NAD levels in vitro and in vivo. This discussion will focus on the precursors NR, NMN, NMNH, and DNR in the upregulation of NAD. There are many publications on NAD precursors as it has become popular for human consumption in recent years due to its vital importance to the general consumer. However, there is no consensus between researchers and this was the aim of this review, to determine and discuss their areas of agreement versus disagreement, to highlight the gaps in research, and to give recommendations for future work. Bioavailability and potency of NR, NMNH, NMN, and DNR is also examined on the light of the most recent literature.
Publication Date: 2021-09-24
Journal: Aging medicine (Milton (N.S.W))


adenylyltransferase nmnat(23)

Characterization and application of a novel nicotinamide mononucleotide adenylyltransferase from Thermus thermophilus HB8.
Herein, we describe a novel enzymatic cycling method to measure nicotinamide mononucleotide (NMN) or nicotinic acid mononucleotide (NaMN), which are precursors of NAD biosynthesis. A gene encoding an NMN adenylyltransferase (NMNAT, EC 2.7.7.1) homologue was identified in Thermus thermophilus HB8. The gene from T. thermophilus (TtNMNAT) was engineered for expression in Escherichia coli and the recombinant enzyme found to be stable, retaining full activity after incubation for 45 min at 70°C. The K
Publication Date: 2017-11-28
Journal: Journal of bioscience and bioengineering


n-methylnicotinamide nmn(21)

Abnormalities in metabolic pathways in celiac disease investigated by the metabolic profiling of small intestinal mucosa, blood plasma and urine by NMR spectroscopy.
Celiac disease (CeD) is an autoimmune enteropathy caused by gluten intake in genetically predisposed individuals. We investigated the metabolism of CeD by metabolic profiling of intestinal mucosa, blood plasma and urine using NMR spectroscopy and multivariate analysis. The metabolic profile of the small intestinal mucosa was compared between patients with CeD (n = 64) and disease controls (DCs, n = 30). The blood plasma and urinary metabolomes of CeD patients were compared with healthy controls (HCs, n = 39). Twelve metabolites (proline (Pro), arginine (Arg), glycine (Gly), histidine (His), glutamate (Glu), aspartate, tryptophan (Trp), fumarate, formate, succinate (Succ), glycerophosphocholine (GPC) and allantoin (Alln)) of intestinal mucosa differentiated CeD from controls. The metabolome of blood plasma with 18 metabolites (Pro, Arg, Gly, alanine, Glu, glutamine, glucose (Glc), lactate (Lac), acetate (Ace), acetoacetate (AcAc), β-hydroxybutyrate (β-OHB), pyruvate (Pyr), Succ, citrate (Cit), choline (Cho), creatine (Cr), phosphocreatine (PCr) and creatinine) and 9 metabolites of urine (Pro, Trp, β-OHB, Pyr, Succ, N-methylnicotinamide (NMN), aminohippurate (AHA), indoxyl sulfate (IS) and Alln) distinguished CeD from HCs. Our data demonstrated changes in nine metabolic pathways. The altered metabolites were associated with increased oxidative stress (Alln), impaired healing and repair mechanisms (Pro, Arg), compromised anti-inflammatory and cytoprotective processes (Gly, His, NMN), altered energy metabolism (Glc, Lac, β-OHB, Ace, AcAc, Pyr, Succ, Cit, Cho, Cr and PCr), impaired membrane metabolism (GPC and Cho) and intestinal dysbiosis (AHA and IS). An orthogonal partial least square discriminant analysis model provided clear differentiation between patients with CeD and controls in all three specimens. A classification model built by combining the distinguishing metabolites of blood plasma and urine samples gave an AUC of 0.99 with 97.7% sensitivity, 93.3% specificity and a predictive accuracy of 95.1%, which was higher than for the models built separately using small intestinal mucosa, blood plasma and urine. In conclusion, a panel of metabolic biomarkers in intestinal biopsies, plasma and urine samples has potential to differentiate CeD from controls and may complement traditional tests to improve the diagnosis of CeD.
Publication Date: 2020-05-13
Journal: NMR in biomedicine


3-methoxytyramine 3-mt(20)

A 3-min UPLC-MS/MS method for the simultaneous determination of plasma catecholamines and their metabolites: Method verification and diagnostic efficiency.
To verify a rapid and sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the quantification of catecholamines and their metabolites, and to validate its efficiency for the diagnosis of phaeochromocytomas and paragangliomas (PPGLs). Plasma samples were pretreated with solid-phase extraction, followed by a 3-min UPLC-MS/MS analysis to quantify epinephrine (E), norepinephrine (NE), dopamine (DA), metanephrine (MN), normetanephrine (NMN) and 3-methoxytyramine (3-MT), simultaneously. The UPLC-MS/MS method was comprehensively verified and its diagnostic efficiency on PPGLs was tested using 7 PPGLs and 408 non-PPGLs patient plasma samples. Using the developed method, the limit of detections (LODs) of the 6 analytes ranged from 0.0002 nmol/L (MN) to 0.0250 nmol/L (NE), while the lower limit of measuring intervals (LLMIs) ranged from 0.05 nmol/L (E, MN and NMN) to 0.10 nmol/L (NE and DA). The reportable ranges were 0.05-30.00 nmol/L for E, MN and NMN, 0.10-30.00 nmol/L for NE and DA, 1.00-300.00 pg/mL for 3-MT. No significant matrix effect was detected after correcting using internal standard. Besides, intra-day and inter-day precision were also within acceptance criteria with coefficient of variations (CVs) ≤ 15% and recoveries ranged from 95% to 115% for all the 6 analytes. The carryover effect was lower than 10%. Its diagnostic efficiency for PPGLs was significantly increased, the areas under the receiver operating characteristic (ROC) curves were increased from 68.7% to 89.1% (using E, NE and DA) to 75.2%-99.9% (using MN, NMN and 3-MT). This study verified a rapid UPLC-MS/MS method for the determination of catecholamines and their metabolites in human plasma. It showed high diagnostic efficiency and will serve as an important tool to avoid the risk for missing patients with PPGLs.
Publication Date: 2020-10-24
Journal: Clinical biochemistry


dopamine da(19)

Validation of an improved liquid chromatography tandem mass spectrometry method for rapid and simultaneous analysis of plasma catecholamine and their metabolites.
Catecholamines [dopamine (DA), epinephrine (E), and norepinephrine (NE)] and their metabolites [metanephrine (MN), normetanephrine (NMN), and 3-methoxytyramine (3-MT)] are functionally important in humans. Their overexpression can indicate the presence of neuroendocrine tumors. Accurate and rapid quantitation of catecholamines and their metabolites may function in differential diagnosis of neuroendocrine tumors. Herein, we diluted 200 μL plasma using isotope labelled internal standards (IS), and extracted using solid phase extraction. The performance of isotope diluted liquid chromatography tandem mass spectrometry (ID-LC-MS/MS) was evaluated and applied to quantify the level of catecholamines and metabolites in clinical samples from 73 apparently healthy adults. The total analysis time of the ID-LC-MS/MS method was 4 min. The improved method was highly sensitive, with a limit of quantification (LOQ) for MN, NMN, 3-MT, and E of 1 pg/mL, a LOQ for DA of 5 pg/mL, and for NE of 10 pg/mL. After correction using IS, no significant matrix effects were observed. Good reproducibility was obtained, with total CVs of 3.2-13.1% (DA), 4.8-10.0% (E), 6.2-6.9% (NE), 3.8-7.9% (MN), 4.1-8.8% (NMN), 3.4-8.9% (3-MT). Recoveries were in the range of 91.1-109.7% for the six analytes. Also, the mean concentration of catecholamines were as follows: MN, 22.9 ± 7.2 pg/mL; NMN, 41.4 ± 17.2 pg/mL; 3-MT, 2.34 ± 2.01 pg/mL; DA, 10.2 ± 4.6 pg/mL; E, 29.3 ± 14.2 pg/mL and NE 427.0 ± 190.6 pg/mL. A reliable ID-LC-MS/MS method for the determination of catecholamines and their metabolites using small volumes of plasma was verified. This method is rapid, simple, and may serve as an essential diagnostic tool for neuroendocrine tumors in clinical practice.
Publication Date: 2019-11-02
Journal: Journal of chromatography. B, Analytical technologies in the biomedical and life sciences


organic cations(19)

Choline uptake in human intestinal Caco-2 cells is carrier-mediated.
The objective of the current investigation was to examine the transport characteristics of choline, an endogenous quaternary ammonium compound, into human intestinal Caco-2 cells; the transport of choline has not been characterized in human intestine. The cellular accumulation of choline was independent of an inwardly directed Na(+) gradient and demonstrated temperature dependence and saturability. Using the initial uptake rates, choline accumulation was best characterized by a Michaelis-Menten equation and a diffusion component with a K(m) and V(max) of 110 +/- 3 micro mol/L and 2800 +/- 250 pmol/(mg protein. 10 min), respectively. Choline uptake was significantly inhibited by an excess of choline itself and by hemicholinium-3, a structural analog of choline. However other hydrophilic organic cations, such as tetraethylammonium (TEA) and N-methylnicotinamide (NMN), did not affect choline uptake in Caco-2 cells. Additionally, two typical p-glycoprotein substrates, daunomycin and verapamil, both inhibited choline accumulation. However the opposite was not true: choline did not inhibit DNM accumulation in Caco-2 cells. These results indicate the presence of a carrier-mediated transport system for choline in Caco-2 cells. The substrate specificity of this carrier is unlike that seen in the rat intestinal epithelium, and the human transport protein is distinct from those for TEA and NMN. P-glycoprotein substrates may inhibit choline uptake through specific or nonspecific interactions with the choline transporter.
Publication Date: 2003-07-31
Journal: The Journal of nutrition


nmn metanephrine(17)

The noradrenergic profile of plasma metanephrine in neuroblastoma patients is reproduced in xenograft mice models and arise from PNMT downregulation.
Metanephrines (MNs; normetanephrine (NMN), metanephrine (MN) and methoxytyramine (MT)) detected in urine or plasma represent the best biomarker for neuroblastoma (NB) diagnosis, however the metabolism of both catecholamine (CAT) and MNs remains enigmatic in NB. Using patient-derived xenograft (PDX) models derived from primary NB cells, we observed that the plasma levels of MNs in NB-PDX-bearing mice were comparable as in patients. Interestingly, murine plasma displayed an elevated fraction of glucuronidated forms of MNs relative to human plasma where sulfonated forms prevail. In tumors, the concentration ranges of MNs and CAT and the expression levels of the main genes involved in catecholamine metabolism were similar between NB-PDX and human NB tissues. Likewise, plasma and intratumoral profiles of individual MNs, with increased levels of MT and NMN relative to MN, were also conserved in mouse models as in patients. We further demonstrated the downregulation of the Phenylethanolamine N-Methyltransferase gene in NB biopsies and in NB-PDX explaining this biochemical phenotype, and giving a rational to the low levels of epinephrine and MN measured in NB affected patients. Thus, our subcutaneous murine NB-PDX models not only reproduce the phenotype of primary NB tumors, but also the metabolism of catecholamine as observed in patients. This may potentially open new avenues in preclinical studies for the follow up of novel therapeutic options for NB through the quantification of plasma MNs.
Publication Date: 2021-01-19
Journal: Oncotarget


tetraethylammonium tea(15)

Involvement of specific transport system of renal basolateral membranes in distribution of nicotine in rats.
We measured the nicotine concentrations in tissues after a bolus i.v. administration of [(3)H]nicotine to rats to characterize the distribution profile of nicotine. The kidney showed the greatest distribution of nicotine compared to other tissues including liver, lung, heart, brain, and intestine. We also performed an HPLC assay for the determination of nicotine and its major metabolite, cotinine, and found that cotinine was negligible in the distribution of almost all tissues, except for the kidney and lung. In the kidney, cotinine was detected at a lower level than nicotine, while cotinine tended to be distributed in the lung compared to nicotine. [(3)H]Nicotine was accumulated in renal slices in a concentration dependent fashion, suggesting that the nicotine uptake in the renal tubules could be mediated by a specific transport system. Unlabeled nicotine, cotinine, and quinidine showed potent inhibitory effects on [(3)H]nicotine uptake by renal slices. In contrast, tetraethylammonium (TEA), cimetidine, and N(1)-methylnicotinamide (NMN), which were substrates of renal organic cation transporters, had no effects on the uptake. These findings suggested that a specific transporter was involved in nicotine transport at the basolateral membranes of rat renal tubules, which could mediate the high accumulation of nicotine from blood into the kidney.
Publication Date: 2004-12-25
Journal: Drug metabolism and pharmacokinetics


acid vma(15)

Detection of Plasma Catecholamines in Human Pheochromocytoma and Primary Hypertension Based on Liquid Chromatography Tandem Mass Spectrometry.
The measurement of plasma catecholamines (CAs) including dopamine (DA), epinephrine (E), and norepinephrine (NE) and their derivatives including metanephrine (MN), normetanephrine (NMN), vanillylmandelic acid (VMA), and homovanillic acid (HVA) has been used in the diagnosis of pheochromocytoma and paraganglioma (PPGL) and primary hypertension (PH) but are typically detected individually when clinical testing. In this study, pre-column derivatization with dansyl chloride (DNS-Cl) combined with an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed to simultaneously quantify HVA, VMA, MN, NMN, DA, E, and NE in the plasma from patients with PPGL and PH. Plasma samples were extracted by acetonitrile and derivatized with DNS-Cl, followed by reverse phase separation and triple quadruple detection. Quantification of the CAs and their derivatives in 10 PPGL, 10 PH, and 100 healthy subjects was performed by UPLC-MS/MS analysis. All the values of detected CAs/derivatives were in the linearity ranges of the fitted curves. The expression levels of the seven CAs in the PPGL and PH patients were significantly higher than the healthy controls, suggesting increased CA production in the former. There were significant differences in plasma NE, NMN, and VMA levels between the PPGL and PH patients, but there was no significant difference in plasma E, MN, DA, and HVA. A discriminant analysis showed that 90% of the final cases were classified correctly based on the detected CAs/derivatives. Our results show that the combined detection of the seven CAs/derivatives could be used for the clinical diagnosis of PPGL and PH.
Publication Date: 2019-04-28
Journal: Annals of clinical and laboratory science


phosphoribosyltransferase nampt(15)

Nicotinamide phosphoribosyltransferase contributes to cocaine addiction through sirtuin 1.
Drug addiction is a persistent mental illness and there is no effective treatment. The precise mechanisms underlying addictive responses have not been completely understood, although ion channels, neurotransmitters as well as their receptors, and intracellular endogenous molecules in the brain have been shown to play important roles in cocaine addiction. Nicotinamide phosphoribosyltransferase (NAMPT) is an important rate-limiting enzyme found throughout the body that converts the intracellular pool of nicotinamide adenine dinucleotide (NAD) into nicotinamide mononucleotide (NMN). It reveals a critical role in physiological and pathophysiological conditions such as NAD biosynthesis, aging, inflammation, obesity, diabetes, stroke, motor dysfunction, and cancer. A recent study published in Experimental Neurology by Cen group demonstrated that NAMPT contributes to cocaine reward through sirtuin 1 (SIRT1) signaling in the brain ventral tegmental area. Thus, targeting NAMPT/SIRT1 signaling pathway may provide a promising therapeutic strategy against cocaine addiction.
Publication Date: 2020-01-30
Journal: International journal of physiology, pathophysiology and pharmacology


nmn levels(15)

Plasma free metanephrine and normethanephrine levels correlated to plasma catecholamine after acute running in amateur runner.
Catecholamine is a typical index of exercise intensity, but it is difficult to detect. Plasma metanephrine (MN) and normethanephrine (NMN) levels are more stable than those of catecholamines. This study aimed to investigate plasma MN and NMN levels during acute exercise running in amateur runners. Samples were collected from eight healthy male participants. They were either sedentary or running at low or high intensity for 30 min. Blood samples were collected under these conditions. Measurements taken included plasma adrenaline, noradrenaline, MN, and NMN. Plasma adrenaline levels increased after high-intensity exercise compared with sedentary subjects. Plasma noradrenaline, MN, and NMN levels increased after both low- and high-intensity exercise compared with sedentary subjects. In addition, these levels were also significantly higher at high intensity than at low intensity. Plasma adrenaline and noradrenaline levels were positively correlated with plasma free MN and NMN levels after acute running, respectively. This study revealed that plasma MN and NMN levels transiently increased depending on exercise intensity in amateur runners. In addition, plasma NMN levels are better markers than plasma MN levels because of their stronger correlation with plasma catecholamine levels.
Publication Date: 2021-05-04
Journal: Journal of exercise science and fitness


lc-ms ms(13)

Urinary free metanephrines measurement in dogs with adrenal gland diseases using a new simple liquid chromatography tandem mass spectrometry method.
Measurement of urinary metanephrines in spot samples is used for the diagnosis of canine pheochromocytoma (PC). We describe a simple analytical method based on liquid chromatography tandem mass spectrometry (LC-MS/MS) for measuring free metanephrine (MN) and normetanephrine (NMN) in spot urine samples. Using the developed method, we evaluated the stability of urinary free-MN and free-NMN at various storing conditions. In addition, we assessed the feasibility of urinary free-MN and -NMN measurement for diagnosing PC. Urine samples were mixed with stable isotope internal standards and thereafter purified by ultrafiltration. The purified samples were analyzed by LC-MS/MS in the multiple reaction monitoring mode after separation on a multimode octa decyl silyl column. The coefficient of variation of free-MN and -NMN measurement was 7.6% and 5.5%, respectively. The linearity range was 0.5-10 µg/l for both analytes. Degradation was less than 10% for both analytes under any of the storage conditions. The median free-NMN ratio to creatinine of 9 PC dogs (595, range 144-47,961) was significantly higher (P<0.05) than that of 13 dogs with hypercortisolism (125, range 52-224) or 15 healthy dogs (85, range 50-117). The developed method is simple and may not require acidification of spot urine. The results of this preliminary retrospective study suggest that the measurement of urinary free metanephrines is a promising tool for diagnosing canine PC.
Publication Date: 2021-03-09
Journal: The Journal of veterinary medical science


mn normetanephrine(12)

An LC-MRM assay for the quantification of metanephrines from dried blood spots for the diagnosis of pheochromocytomas and paragangliomas.
The quantitation of metanephrine (MN), normetanephrine (NMN), and 3-methoxytyramine (3-MT) - referred to as metanephrines -- by LC-MS/MS is the gold-standard for screening for pheochromocytoma and paragangliomas (PPGLs), tumours of the adrenal gland and the peripheral nervous system. An assay for metanephrines from dried blood spots (DBSs) would be of high clinical utility as it simplifies sample collection, enables remote sampling, and could increase compliance with the clinical recommendation for supine sampling. Moreover, DBS sampling facilitates the measurement of blood-derived metanephrines in pediatric patients - where DBSs are well-established - in order to diagnose neuroblastomas. Here, we adapted an established derivatization-based LC-MRM-MS assay for plasma catecholamines, and optimized the sample extraction, LC, and MS parameters to produce a fast, sensitive, and robust method for the measurement of metanephrines from DBSs, including 3-methoxytyramine. The DBS samples were excised, derivatized with phenyl isothiocyanate (PITC) on-spot, extracted, and measured by LC-MRM-MS. To validate assay suitability and performance, we assessed the linearity, precision, accuracy, recovery, and matrix effects of the method, and determined the stability of metanephrines in DBSs under different storage conditions. Assay performance for NMN, MN, and 3-MT was sufficient for quantitation from a single DBS within a linear range from 40 to 2000 pg/mL. MN and NMN were stable in DBSs for 2 weeks, whereas 3-MT was stable for one week regardless of storage temperature. Altogether, this work represents the first quantitative LC-MS/MS method for metanephrines from DBSs and provides a novel opportunity for the diagnosis of PPGLs and neuroblastomas in the future.
Publication Date: 2020-08-23
Journal: Analytica chimica acta


p less(12)

Transport of organic cations by a renal epithelial cell line (OK).
The goal of this study was to determine the mechanisms involved in the transport of the organic cation, tetraethylammonium (TEA), across the apical membrane of OK cells. [14C]TEA accumulated in OK cell monolayers reaching equilibrium in 2 h. The uptake of [14C]TEA at equilibrium was dependent upon temperature and was inhibited by sodium azide and by various organic cations, including N1-methylnicotinamide (NMN), mepiperphenidol, and cimetidine but not by the organic anion, p-aminohippuric acid. The initial uptake of [14C]TEA was characterized by a saturable process. The mean +/- S.D. Km was 27.8 +/- 2.6 microM and the Vmax was 414 +/- 26.5 pmol/mg protein/min. Both an accelerated efflux and influx of [14C]TEA in the presence of a trans-gradient of unlabeled TEA and NMN was observed, whereas a deaccelerated influx and efflux was observed in the presence of a trans-gradient of mepiperphenidol. The mechanism of interaction between NMN and TEA was examined. NMN significantly increased the apparent Km (mean +/- S.D.) of TEA to 82.8 +/- 16.4 microM (p less than 0.001), whereas the Vmax (mean +/- S.D.) was only slightly affected (478 +/- 72 pmol/mg protein/min) suggesting a competitive inhibition. The stimulatory effect of trans-gradients of NMN on TEA transport was due to an increase in the Vmax of TEA suggesting that NMN trans-stimulates TEA transport by increasing the turnover rate of the exchanger. In the presence of an inwardly directed proton gradient, the efflux at 30 s of [14C]TEA from the OK cell monolayers was significantly accelerated (p less than 0.05). Studies with the pH-sensitive fluorescent probe, 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein, suggested that TEA could drive the countertransport of protons. In apical membrane vesicles prepared from OK cells, the uptake of [3H]NMN exhibited an apparent "overshoot phenomenon" in the presence of an initial outwardly directed proton gradient. Protons competitively inhibited TEA uptake suggesting that the proton/organic cation and the organic cation/organic cation self exchange mechanism are the same mechanism. This is the first report describing both TEA self-exchange and proton/TEA exchange in the apical membrane of a continuous cell line. OK cells are an excellent model for the study of organic cation transport across the apical membrane.
Publication Date: 1991-05-15
Journal: The Journal of biological chemistry


nmn deamidase(12)

Characterization of Two NMN Deamidase Mutants as Possible Probes for an NMN Biosensor.
Nicotinamide mononucleotide (NMN) is a key intermediate in the nicotinamide adenine dinucleotide (NAD+) biosynthesis. Its supplementation has demonstrated beneficial effects on several diseases. The aim of this study was to characterize NMN deamidase (PncC) inactive mutants to use as possible molecular recognition elements (MREs) for an NMN-specific biosensor. Thermal stability assays and steady-state fluorescence spectroscopy measurements were used to study the binding of NMN and related metabolites (NaMN, Na, Nam, NR, NAD, NADP, and NaAD) to the PncC mutated variants. In particular, the S29A PncC and K61Q PncC variant forms were selected since they still preserve the ability to bind NMN in the micromolar range, but they are not able to catalyze the enzymatic reaction. While S29A PncC shows a similar affinity also for NaMN (the product of the PncC catalyzed reaction), K61Q PncC does not interact significantly with it. Thus, PncC K61Q mutant seems to be a promising candidate to use as specific probe for an NMN biosensor.
Publication Date: 2021-07-03
Journal: International journal of molecular sciences


plasma free(11)

Plasma free metanephrines for diagnosis of neuroblastoma patients.
A substantial number of patients with neuroblastoma (NB) have increased excretion of catecholamines and metanephrines. Here, we have investigated the diagnostic role of plasma free metanephrines (PFM), metanephrine (MN), normetanephrine (NMN) and 3-methoxytyramine (3MT) for NB, the most common extra-cranial solid tumour in children. PFM were quantified by using a commercial IVD-CE LC-MS/MS method on a TSQ Quantiva coupled to an Ultimate 3000. The method was further validated on 103 samples from pediatric subjects (54 patients with histologically confirmed NB and 49 age and sex matched controls). Correlations between PFM concentrations with clinical factors were tested. We directly compared MN, NMN, and 3MT concentrations in matched plasma and urine samples of NB patients (n = 29). 3MT and NMN showed an excellent diagnostic performance with very high specificity (100% and 95.8%, respectively) and sensitivity (88.2% and 80.4%). ROC curves were obtained (AUC of 0.93 and 0.91 for 3MT and NMN, respectively) and optimal cut-offs that could discriminate between controls and NB patients were defined. A positive correlation between NMN levels in urine and plasma (p = .0017) was found. The determination of plasma 3MT and NMN should be taken in consideration as a new diagnostic tool for NB. Validation in prospective clinical studies in comparison to urinary catecholamines and metanephrines is warranted.
Publication Date: 2019-03-02
Journal: Clinical biochemistry


plasma nmn(11)

The importance of standardisation of measurement and reference intervals for detection of phaeochromocytoma and paraganglioma (PPGL).
A 51-year-old male presented 25 years ago with excessive sweating and haematuria. Blood pressure was labile. CT abdomen showed a large right-sided adrenal mass. Two 24-h urine collections showed elevated urinary catecholamines. Right adrenal resection was performed; a phaeochromocytoma (PC) was confirmed histologically. Two decades later, the patient represented with excessive sweating and measured variable blood pressure readings. Measurement of plasma metanephrines (PMets) showed elevated normetanephrine (NMN) [50,250 (R.I. 0-1180) pmol/L] and metanephrine (MN) [1030 (R.I. 0-510) pmol/L] values. CT abdomen showed a 100 × 90 × 63 mm enhancing mass in the right retroperitoneum. Curative resection was undertaken confirming recurrent PC. Follow-up post-resection, plasma NMN was discordant, 1314 pmol/L (above decision threshold) at 30 min and 911 pmol/L (below decision threshold) at 40 min. Acute clinical awareness of persistent disease mandated the performance of a metaiodobenzylguanidine (MIBG) scan and CT abdomen. These confirmed residual disease in the upper right side of the retroperitoneum. Persistent disease following redo surgery could have been missed if only seated-sampling upper reference limits were applied to PMets collected at 40 min. Our experience with this patient triggered a review of our PMets sampling strategy. There was no statistically significant difference in PMets sampled at 30 and at 40 min seated-rest. Optimum diagnostic test accuracy was achieved using a supine-sampling strategy at a single time point (30 min). Our case highlights the importance of maintaining a high index of clinical suspicion for residual/recurrent disease in the face of inconclusive biochemistry, followed by appropriate targeted radiology using MIBG or PET-CT in patients with PPGL.
Publication Date: 2018-02-21
Journal: Irish journal of medical science


3h methylnicotinamide(8)

Organic cation transport in human renal brush-border membrane vesicles.
The renal proximal tubule is responsible for the active elimination of organic cations. Studies in brush-border membrane vesicles (BBMV) suggest that active organic cation transport is mediated by an organic cation-proton antiporter. The goals of this study were to determine whether this transporter is expressed in human kidney and to elucidate its characteristics. Transport of the organic cations N1-[3H]methylnicotinamide (NMN) and [14C]tetraethylammonium (TEA) was determined by rapid filtration in BBMV of donor human kidneys. The uptake of NMN and TEA was driven against a concentration gradient by an outwardly directed proton gradient. NMN uptake was inhibited by the organic cations TEA, NMN, quinine, and cimetidine, but was not affected by p-aminohippuric acid, cephalexin, and polyamines. The electroneutral transport of NMN was characterized by a Km of 0.44 +/- 0.07 mM and a Vmax of 24.4 +/- 15.2 pmol.mg protein-1.s-1. The rate of proton efflux from BBMV increased in the presence of an inwardly directed TEA gradient. Preloading BBMV with NMN or TEA trans-stimulated the initial rate of uptake of TEA. Therefore the human proximal tubule expresses an organic cation-proton antiporter in the brush-border membrane. The antiporter is similar to that described in other mammalian species but shows some differences in its transport characteristics.
Publication Date: 1991-09-01
Journal: The American journal of physiology


poly adp-ribose(7)

Detection and pharmacological modulation of nicotinamide mononucleotide (NMN) in vitro and in vivo.
The emerging key role of NAD-consuming enzymes in cell biology has renewed the interest in NAD resynthesis through the rescue pathways. The first step of the nicotinamide-dependent NAD-rescue pathway is operated by nicotinamide phosphoribosyl transferase (NaPRT) forming nicotinamide mononucleotide (NMN). Because of the difficulties in measuring NMN, numerous open questions exist about the pathophysiological relevance of NaPRT and NMN itself. Here, we describe a new method of fluorimetric NMN detection upon derivatization of its alkylpyridinium group with acetophenone. By adopting this method, we analyzed the kinetics of nicotinamide-dependent NAD recycling in HeLa and U937 cells. Measurement of NMN contents in subcellular fractions revealed that the nucleotide is highly enriched in mitochondria, suggesting intramitochondrial NAD synthesis. NMN increases in cells undergoing hyperactivation of the NAD-consuming enzyme poly(ADP-ribose) polymerase (PARP)-1, or exposed to gallotannin, a putative inhibitor of NMN-adenylyl transferases. Evidence that the inhibitor of NAD resynthesis FK866 selectively inhibits NaPRT having no effect on NMNAT activity is also provided. Importantly, NMN reduces NAD and ATP depletion in cells undergoing PARP-1 hyperactivation, significantly delaying cell death. Finally, we show that a single injection of FK866 in the mouse induces long-lasting (up to 16 h) but mild (approximately 20%) reduction of NMN contents in different organs, suggesting slow rate of basal NAD consumption in vivo. Data provide new information on the biochemistry and pharmacology of NAD biosynthesis, allowing a better understanding of pyridine nucleotide metabolism.
Publication Date: 2009-05-12
Journal: Biochemical pharmacology


95 ci(6)

Pro-Neurotensin/Neuromedin N and Hypertension Risk: a Prospective Study.
Neurotensin, a neuropeptide with direct cardiac effects, has been associated with prospective risk of hypertension-related conditions through measurement of its precursor, pro-neurotensin/neuromedin N (pro-NT/NMN). Its association with incident hypertension has not been evaluated. From 2003-2007, the REasons for Geographic And Racial Differences in Stroke (REGARDS) study enrolled 30,239 Black or White adults age ≥45. Pro-NT/NMN was measured in 1,692 participants without baseline hypertension (self-reported antihypertensive use or blood pressure ≥140/90 mmHg) who underwent follow-up assessment in 2013-16. A sensitivity analysis was conducted using a lower threshold (≥130/80 mmHg) to define hypertension. Three robust Poisson regression models were fitted to risk of incident hypertension, adding demographics, cardiometabolic risk factors, and dietary covariates. 614 participants developed hypertension over 9.4 years of follow-up. Pro-NT/NMN ranged from 14-1246 pmol/L, with median [interquartile range] 154 [112, 206] pmol/L. Pro-NT/NMN was not associated with hypertension overall (fully-adjusted incidence rate ratio [IRR] per standard deviation [SD] increment log pro-NT/NMN 1.03, 95% CI 0.95-1.11). Results of sensitivity analysis did not differ substantially. Baseline pro-NT/NMN was not associated with incident hypertension. This may be a result of neurotensin's long-term interactions with other molecular regulators of blood pressure, such as the renin-angiotensin-aldosterone system.
Publication Date: 2021-10-17
Journal: American journal of hypertension


min -1(5)

Blood-brain barrier transport kinetics of the neuromedin peptides NMU, NMN, NMB and NT.
The neuromedin peptides are peripherally and centrally produced, but until now, it is generally believed that they only function as locally acting compounds without any quantitative knowledge about their blood-brain barrier (BBB) passage. Here, we characterize the transport kinetics of four neuromedins (NMU, NMN, NMB and NT) across the BBB, as well as their metabolization profile, and evaluate if they can act as endocrine hormones. Using the in vivo mouse model, multiple time regression (MTR), capillary depletion (CD) and brain efflux studies were performed. Data was fitted using linear (NMU, NT and NMB) or biphasic modeling (NMU and NMN). Three of the four investigated peptides, i.e. NMU, NT and NMN, showed a significant influx into the brain with unidirectional influx rate constants of 1.31 and 0.75 μL/(g × min) for NMU and NT respectively and initial influx constants (K1) of 72.14 and 7.55 μL/(g × min) and net influx constants (K) of 1.28 and 1.36 × 10(-16) μL/(g×min) for NMU and NMN respectively. The influx of NMB was negligible. Only NMN and NT showed a significant efflux out of the brain with an efflux constant (kout) of 0.042 min(-1) and 0.053 min(-1) respectively. Our results indicate that locally produced neuromedin peptides and/or fragments can be transported through the whole body, including passing the BBB, and taken up by different organs/tissues, supporting the idea that the neuromedins could have a much bigger role in the regulation of biological processes than currently assumed.
Publication Date: 2016-04-05
Journal: Neuropharmacology


pro-nt nmn(5)

Pro-Neurotensin/Neuromedin N and Risk of Incident Metabolic Syndrome and Diabetes Mellitus in the REGARDS Cohort.
The peptide neurotensin is implicated in insulin resistance, diabetes mellitus (DM), and cardiovascular disease. We studied the association of neurotensin's stable precursor, pro-neurotensin/neuromedin N (pro-NT/NMN) with incident metabolic syndrome (MetS) and DM. We included 3772 participants from the REasons for Geographic and Racial Differences in Stroke (REGARDS) study who completed the baseline exam (2003-2007), the follow-up exam (2013-2016), and had pro-NT/NMN measured by immunoassay. Weighted logistic regression models were fitted to incident DM, incident MetS, and each MetS component, separately, incorporating demographics, metabolic risk factors, homeostasis model of insulin resistance (HOMA-IR), and diet scores. Incident MetS was defined by 3 or more harmonized criteria at follow-up in those with fewer than 3 at baseline. Incident DM was defined by use of hypoglycemic drugs/insulin, fasting glucose 126 mg/dL or greater, or random glucose 200 mg/dL or greater in those without these at baseline. Median (IQR) plasma pro-NT/NMN was 160 pmol/L (118-218 pmol/L). A total of 564 (of 2770 without baseline MetS) participants developed MetS, and 407 (of 3030 without baseline DM) developed DM. Per SD higher log-pro-NT/NMN, the demographic-adjusted odds ratio (OR) and 95% CI of incident MetS was 1.22 (1.11-1.35), 1.16 (1.00-1.35) for incident low high-density lipoprotein (HDL), and 1.25 (1.11-1.40) for incident dysglycemia. The association of pro-NT/NMN with MetS was attenuated in the model adding HOMA-IR (OR per SD log-pro-NT/NMN 1.14; 95% CI, 1.00-1.30). There was no association with incident DM (OR per SD log-pro-NT/NMN 1.06; 95% CI, 0.94-1.19). Pro-NT/NMN was associated with MetS and 2 components, dysglycemia and low HDL, likely explained by insulin resistance.
Publication Date: 2021-05-21
Journal: The Journal of clinical endocrinology and metabolism


10 -4(4)

Validation of an HPLC method for the determination of urinary and plasma levels of N1-methylnicotinamide, an endogenous marker of renal cationic transport and plasma flow.
N1-Methylnicotinamide (NMN) is an endogenous cationic metabolite of nicotinamide (niacine, vitamine PP) whose renal clearance reflects both the capacity of the renal tubular transport system to secrete organic cations and renal plasma flow. NMN is present in human plasma and urine at the 1-117-ng ml(-1) and 0.5-25-microg ml(-1) concentration range, respectively, and its level depends notably on pathophysiological (age, renal or hepatic diseases) conditions. We report the optimization and validation of an HPLC method for the measurement of endogenous NMN in biological fluids after derivatization into a fluorescent compound. Plasma is first deproteinized with TCA 20% and the urine diluted 1:10 with HCI 10(-4) M prior to the derivatization procedure, which includes a condensation reaction of NMN with acetophenone in NaOH at 0 degrees C, followed by dehydration in formic acid and subsequent formation of the fluorescent 1,6-naphthyridine derivatives after heating samples in a boiling water bath. The synthetic homologous derivative N1-ethylnicotinamide (NEN) reacts similarly and is added as internal standard into the biological fluid. The reaction mixture is subjected to reverse phase high performance liquid chromatography on a Nucleosil 100-C18 column using a mobile phase (acetonitrile 22%, triethylamine 0.5%, 0.01 M sodium heptanesulfonate adjusted to pH 3.2), delivered isocratically at a flow rate of 1 ml min(-1), NMN and NEN are detected at 7.8 and 10 min by spectrofluorimetry with excitation and emission wavelengths set at 366 and 418 nm, respectively. The addition-calibration method is used with plasma and urine pools. Calibration curves (using the internal standard method) are linear (r2 > 0.997) at concentrations up to 109 ng ml(-1) and 15.7 microg ml(-1) in plasma and urine, respectively. Both intra- and inter-assay precision of plasma control samples at 10, 50 and 90 ng ml(-1) were lower than 3.3% and concentrations not deviating more than 2.7% from their nominal values. In urine intra- and inter-assay CVs of control samples at 1, 5 and 9 microg ml(-1) are lower than 8.3%, with concentrations not deviating more than -9.0 to +11.8% from their nominal values. This analytical method has therefore the required sensitivity and selectivity to measure NMN in plasma and urine, enabling the non-invasive determination of the tubular secretory capacity of the kidney and the renal plasma flow.
Publication Date: 2001-02-24
Journal: Journal of pharmaceutical and biomedical analysis


respectively p(3)

N(1)-methylnicotinamide as an endogenous probe for drug interactions by renal cation transporters: studies on the metformin-trimethoprim interaction.
N(1)-methylnicotinamide (NMN) was proposed as an in vivo probe for drug interactions involving renal cation transporters, which, for example, transport the oral antidiabetic drug metformin, based on a study with the inhibitor pyrimethamine. The role of NMN for predicting other interactions with involvement of renal cation transporters (organic cation transporter 2, OCT2; multidrug and toxin extrusion proteins 1 and 2-K, MATE1 and MATE2-K) is unclear. We determined inhibition of metformin or NMN transport by trimethoprim using cell lines expressing OCT2, MATE1, or MATE2-K. Moreover, a randomized, open-label, two-phase crossover study was performed in 12 healthy volunteers. In each phase, 850 mg metformin hydrochloride was administered p.o. in the evening of day 4 and in the morning of day 5. In phase B, 200 mg trimethoprim was administered additionally p.o. twice daily for 5 days. Metformin pharmacokinetics and effects (measured by OGTT) and NMN pharmacokinetics were determined. Trimethoprim inhibited metformin transport with K i values of 27.2, 6.3, and 28.9 μM and NMN transport with IC50 values of 133.9, 29.1, and 0.61 μM for OCT2, MATE1, and MATE2-K, respectively. In the clinical study, trimethoprim increased metformin area under the plasma concentration-time curve (AUC) by 29.5 % and decreased metformin and NMN renal clearances by 26.4 and 19.9 %, respectively (p ≤ 0.01). Moreover, decreases of NMN and metformin renal clearances due to trimethoprim correlated significantly (r S=0.727, p=0.010). These data on the metformin-trimethoprim interaction support the potential utility of N(1)-methylnicotinamide as an endogenous probe for renal drug-drug interactions with involvement of renal cation transporters.
Publication Date: 2015-01-02
Journal: European journal of clinical pharmacology


14 c(2)

Recycling nicotinamide. The transition-state structure of human nicotinamide phosphoribosyltransferase.
Human nicotinamide phosphoribosyltransferase (NAMPT) replenishes the NAD pool and controls the activities of sirtuins, mono- and poly-(ADP-ribose) polymerases, and NAD nucleosidase. The nature of the enzymatic transition-state (TS) is central to understanding the function of NAMPT. We determined the TS structure for pyrophosphorolysis of nicotinamide mononucleotide (NMN) from kinetic isotope effects (KIEs). With the natural substrates, NMN and pyrophosphate (PPi), the intrinsic KIEs of [1'-(14)C], [1-(15)N], [1'-(3)H], and [2'-(3)H] are 1.047, 1.029, 1.154, and 1.093, respectively. A unique quantum computational approach was used for TS analysis that included structural elements of the catalytic site. Without constraints (e.g., imposed torsion angles), the theoretical and experimental data are in good agreement. The quantum-mechanical calculations incorporated a crucial catalytic site residue (D313), two magnesium atoms, and coordinated water molecules. The TS model predicts primary (14)C, α-secondary (3)H, β-secondary (3)H, and primary (15)N KIEs close to the experimental values. The analysis reveals significant ribocation character at the TS. The attacking PPi nucleophile is weakly interacting (r(C-O) = 2.60 Å), and the N-ribosidic C1'-N bond is highly elongated at the TS (r(C-N) = 2.35 Å), consistent with an A(N)D(N) mechanism. Together with the crystal structure of the NMN·PPi·Mg2·enzyme complex, the reaction coordinate is defined. The enzyme holds the nucleophile and leaving group in relatively fixed positions to create a reaction coordinate with C1'-anomeric migration from NAM to the PPi. The TS is reached by a 0.85 Å migration of C1'.
Publication Date: 2013-02-05
Journal: Journal of the American Chemical Society


significant(37)

Modulation of Salubrinal-Mediated Endoplasmic Reticulum Stress in an Experimental Subarachnoid Hemorrhage Model.
Perfusion abnormalities due to vasospasm remain a major cause of morbidity and mortality in subarachnoid hemorrhage (SAH). Despite a large number of clinical trials, therapeutic options with strong evidence for prevention and treatment of cerebral vasospasm are rare. In this study, we aimed to evaluate the neuroprotective effect of salubrinal (SLB) in endoplasmic reticulum stress-induced apoptosis, a catastrophic consequence of vasospasm. Thirty-two Wistar albino rats were divided into 4 groups of 8 rats each: control group, SAH, SAH+SLB, and SAH+nimodipine (NMN). In the SAH+SLB group, intraperitoneal SLB (1 mg/kg dose) administered 30 minutes after establishment of SAH, and in the SAH+NMN group, intraperitoneal NMN (0.1 mg/kg dose) was also administered 30 minutes after SAH. Higher total antioxidant status level, lower oxidative stress index, and significantly higher vascular endothelial growth factor-A (VEGF-A) level were detected in the SAH+SLB and SAH+NMN groups compared with the SAH group. There was a significant increase in eukaryotic translation initiation factor-2 alpha (elF2α) level in the SAH+SLB group compared with the SAH group. Histopathological evaluation revealed decrease in the subarachnoid hemorrhagic area, as well as in cortical edema and apoptotic bodies in the SAH+SLB and SAH+NMN groups. There was a significant decrease in caspase-3 staining in the SAH+SLB group, and the levels were significantly less in the SAH+NMN group than the SAH and SAH+SLB groups. SLB, selective inhibitor of eIF2α dephosphorylation, and NMN, a calcium channel blocker, can ameliorate SAH-induced damage. Inhibition of eIF2α dephosphorylation and enhanced VEGF-A production with SLB may protect brain tissue from apoptosis.
Publication Date: 2021-07-11
Journal: World neurosurgery


lower(28)

Sex-specific alterations in NAD+ metabolism in 3xTg Alzheimer's disease mouse brain assessed by quantitative targeted LC-MS.
Levels of nicotinamide adenine dinucleotide (NAD+) are known to decline with age and have been associated with impaired mitochondrial function leading to neurodegeneration, a key facet of Alzheimer's disease (AD). NAD+synthesis is sustained via tryptophan-kynurenine (Trp-Kyn) pathway as de novo synthesis route, and salvage pathways dependent on the availability of nicotinic acid and nicotinamide. While being currently investigated as a multifactorial disease with a strong metabolic component, AD remains without curative treatment and important sex differences were reported in relation to disease onset and progression. The aim of this study was to reveal the potential deregulation of NAD+metabolism in AD with the direct analysis of NAD+precursors in the mouse brain tissue (wild type (WT) versus triple transgenic (3xTg) AD), using a sex-balanced design. To this end, we developed a quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, which allowed for the measurement of the full spectrum of NAD+precursors and intermediates in all three pathways. In brain tissue of mice with developed AD symptoms, a decrease in kynurenine (Kyn) versus increase in kynurenic acid (KA) levels were observed in both sexes with a significantly higher increment of KA in males. These alterations in Trp-Kyn pathway might be a consequence of neuroinflammation and a compensatory production of neuroprotective kynurenic acid. In the NAD+ salvage pathway, significantly lower levels of nicotinamide mononucleotide (NMN) were measured in the AD brain of males and females. Depletion of NMN implies the deregulation of salvage pathway critical for maintaining optimal NAD+ levels and mitochondrial and neuronal function.
Publication Date: 2021-04-09
Journal: Journal of neurochemistry


clearance(25)

N-methylnicotinamide is an endogenous probe for evaluation of drug-drug interactions involving multidrug and toxin extrusions (MATE1 and MATE2-K).
Multidrug and toxin extrusion 1 (MATE1) and MATE2-K are H(+)/organic cation exchangers mediating the efflux of cationic drugs into the urine. N-methylnicotinamide (NMN) was found to be an endogenous substrate of MATE1 (Michaelis constant (K(m)) 301 ± 18 µmol/l) and MATE2-K (K(m) 422 ± 63 µmol/l) as well as a basolateral influx transporter, organic cation transporter 2 (K(m) 318 ± 29 µmol/l). A potent MATE inhibitor, pyrimethamine, competitively inhibited the uptake by MATE1 and MATE2-K with inhibition constant (K(i)) values of 83 ± 15 and 56 ± 11 nmol/l, respectively. The uptake of NMN by human kidney brush border membrane vesicles with a H(+) gradient was saturable (K(m) 360 ± 55 µmol/l) and completely inhibited by pyrimethamine. The renal clearance of endogenous NMN was 403 ± 61 in healthy male subjects, and it was significantly decreased to 119 ± 16 ml/min/kg by an oral dose of pyrimethamine (50 mg). These results support the utility of NMN as an endogenous in vivo probe for investigating MATE1 and MATE2-K in humans.
Publication Date: 2012-10-11
Journal: Clinical pharmacology and therapeutics


mhpg(24)

Determination of levodopa and biogenic amines in urine samples using high-performance liquid chromatography.
A chromatographic system is developed for the separation and determination of levodopa, biogenic amines, and their metabolites from the catecholamines group: dopamine (DA), epinephrine (E), normetanephrine (NMN), metanephrine (MN), 3,4-dihydroxyphenylacetic acid (DOMA), 3-metoxy-4-hydroxyphenyl-glycol (MHPG), and homovanillic acid (HVA); and indoloamines group: serotonin (5HT) and 5-hydroxyindole-3-acetic acid (5HIAA) in urine. The limit of detection (LOD) and limit of quantitation (LOQ) are determined for all compounds with signal-to-noise ratio (S/N) of 3 and 10, respectively. LOD 10 (ng/mL) and LOQ 30 (ng/mL) are determined for L-DOPA, DOMA, E, NMN, DA, MN, and MHPG, as well as LOD 8 (ng/mL) and LOQ 24 (ng/mL) for HVA, 5HT, and 5HIAA. A fluorescence detector is used. Gradient elution with acetate buffer (pH=4.66) with methanol is applied. In urine samples from patients treated with levodopa, the following concentrations (microg/mL) of analytes are determined: L-DOPA 3.73-46.80, DOMA 1.43-28.43, E 0.83-13.57, NMN 2.58-8.81, DA 24.07-62.11, MN 0.89-66.20, MHPG 6.72-63.64, 5HT 22.96-95.27, 5HIAA 1.45-14.77, and HVA 0.21-15.07.
Publication Date: 2008-01-26
Journal: Journal of chromatographic science


nr(23)

POTENTIAL ROLE OF NICOTINAMIDE ANALOGUES AGAINST SARS-COV-2 TARGET PROTEINS.
Coronavirus 2019 (COVID-19) is caused by 'severe acute respiratory syndrome coronavirus 2' (SARS-CoV-2), first reported in Wuhan, China in December 2019, which eventually became a global disaster. Various key mediators have been reported in the pathogenesis of COVID-19. However, no effective pharmacological intervention has been available to combat COVID-19 complications. The present study screens nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN) as potential inhibitors of this present generation coronavirus infection using an in-silico approach. The SARS-CoV-2 proteins (nucleocapsid, proteases, post-fusion core, phosphatase, endoriboruclease) and ACE-2 protein were selected. The 2D structure of nicotinamide ribonucleoside and nicotinamide ribonucleotide was drawn using ChemDraw 14.0 and saved in .cdx format. The results were analyzed using two parameters: full fitness energy and binding free energy (ΔG). The full fitness energy and estimated ΔG values from docking of NM, and NMN with selected SARS-CoV-2 target proteins, ADMET prediction and Target prediction indicate the interaction of NR and NMN in the treatment of COVID-19. Based on full fitness energy and estimated ΔG values from docking studies of NM and NAM with selected SARS-CoV-2 target proteins, ADME prediction, target prediction and toxicity prediction, we expect a possible therapeutic efficacy of NR in the treatment of COVID-19.
Publication Date: 2021-10-06
Journal: Saudi journal of biological sciences


mean(22)

[Determination of β-nicotinamide mononucleotide and nicotinamide adenine dinucleotide in Dendrobium officinale and congeneric species by UPLC-MS/MS].
As anti-aging ingredients, β-nicotinamide mononucleotide(NMN) and nicotinamide adenine dinucleotide(NAD~+) have attracted worldwide attention in recent years. After oral administration, NMN can be converted into NAD~+ in vivo and the latter is the actual ingredient which exerts anti-aging effect. In order to explore the "rejuvenating and anti-aging" effect of Dendrobium officinale, which was firstly recorded in Shennong's Herbal Classic of Materia Medica, this study established the quantitative method of UPLC-MS/MS for simultaneous determination of NMN and NAD~+ in D. officinale and the congeneric species for the first time, and 34 batches of samples were detected. UPLC conditions are as follows: ACQUITY UPLC HSS T3 column(2.1 mm × 100 mm, 1.8 μm), gradient elution with acetonitrile-0.1% formic acid in water at the flow rate of 0.3 mL·min~(-1), and column temperature of 40 ℃. MS conditions were scanned electrospray ionization source and multiple reaction monitoring mode. The method was verified by systematic methodology. The mean recoveries of NMN and NAD~+ were 77.58% and 80.70%, respectively, with RSD of 3.6% and 4.3%, separately. All results showed that the content of NMN was higher in D. officinale than in the other congeneric species. Particularly, the content in fresh D. officinale stems was as high as 0.931 9 μg·g~(-1). NAD~+ was only found in D. officinale and the content was three times higher than that of NMN. This may be the reason that D. officinale topped the "nine famous anti-aging herbs". In addition, processing method influences the content of NMN and NAD~+ in Dendrobium. Specifically, the content of NMN and NAD~+ was in the order of fresh Dendrobium stems > dried Dendrobium stem segments > spiral or spring-like dried Dendrobium stems.
Publication Date: 2021-09-02
Journal: Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica


hva(19)

Catecholamines profiles at diagnosis: Increased diagnostic sensitivity and correlation with biological and clinical features in neuroblastoma patients.
Neuroblastoma (NBL) accounts for 10% of the paediatric malignancies and is responsible for 15% of the paediatric cancer-related deaths. Vanillylmandelic acid (VMA) and homovanillic acid (HVA) are most commonly analysed in urine of NBL patients. However, their diagnostic sensitivity is suboptimal (82%). Therefore, we performed in-depth analysis of the diagnostic sensitivity of a panel of urinary catecholamine metabolites. Retrospective study of a panel of 8 urinary catecholamine metabolites (VMA, HVA, 3-methoxytyramine [3MT], dopamine, epinephrine, metanephrine, norepinephrine and normetanephrine [NMN]) from 301 NBL patients at diagnosis. Special attention was given to subgroups, metaiodobenzylguanidine (MIBG) non-avid tumours and VMA/HVA negative patients. Elevated catecholamine metabolites, especially 3MT, correlated with nine out of 12 NBL characteristics such as stage, age, MYCN amplification, loss of heterozygosity for 1p and bone-marrow invasion. The combination of the classical markers VMA and HVA had a diagnostic sensitivity of 84%. NMN was the most sensitive single diagnostic metabolite with overall sensitivity of 89%. When all 8 metabolites were combined, a diagnostic sensitivity of 95% was achieved. Among the VMA and HVA negative patients, were also 29% with stage 4 disease, which usually had elevation of other catecholamine metabolites (93%). Diagnostic sensitivity for patients with MIBG non-avid tumour was improved from 33% (VMA and/or HVA) to 89% by measuring the panel. Our study demonstrates that analysis of a urinary catecholamine metabolite panel, comprising 8 metabolites, ensures the highest sensitivity to diagnose NBL patients.
Publication Date: 2017-01-07
Journal: European journal of cancer (Oxford, England : 1990)


k(18)

New insights into the phylogeny and molecular classification of nicotinamide mononucleotide deamidases.
Nicotinamide mononucleotide (NMN) deamidase is one of the key enzymes of the bacterial pyridine nucleotide cycle (PNC). It catalyzes the conversion of NMN to nicotinic acid mononucleotide, which is later converted to NAD(+) by entering the Preiss-Handler pathway. However, very few biochemical data are available regarding this enzyme. This paper represents the first complete molecular characterization of a novel NMN deamidase from the halotolerant and alkaliphilic bacterium Oceanobacillus iheyensis (OiPncC). The enzyme was active over a broad pH range, with an optimum at pH 7.4, whilst maintaining 90 % activity at pH 10.0. Surprisingly, the enzyme was quite stable at such basic pH, maintaining 61 % activity after 21 days. As regard temperature, it had an optimum at 65 °C but its stability was better below 50 °C. OiPncC was a Michaelian enzyme towards its only substrate NMN, with a K m value of 0.18 mM and a kcat/K m of 2.1 mM(-1) s(-1). To further our understanding of these enzymes, a complete phylogenetic and structural analysis was carried out taking into account the two Pfam domains usually associated with them (MocF and CinA). This analysis sheds light on the evolution of NMN deamidases, and enables the classification of NMN deamidases into 12 different subgroups, pointing to a novel domain architecture never before described. Using a Logo representation, conserved blocks were determined, providing new insights on the crucial residues involved in the binding and catalysis of both CinA and MocF domains. The analysis of these conserved blocks within new protein sequences could permit the more efficient data curation of incoming NMN deamidases.
Publication Date: 2013-12-18
Journal: PloS one


nmnh(16)

Reduced Nicotinamide Mononucleotide (NMNH) Potently Enhances NAD
Decreased cellular NAD
Publication Date: 2021-04-02
Journal: Journal of proteome research


3h-nmn(16)

Uptake and metabolism of 3H-adrenaline and 3H-noradrenaline by isolated hepatocytes and liver slices of the rat.
Isolated rat hepatocytes were incubated with 0.05 mumol/l or 0.2 mumol/l 3H-(-)-noradrenaline or 0.05 mumol/l 3H-(-)-adrenaline for 15 min and the content of amines as well as the formation of metabolites was measured. The removal of both amines from the incubation medium was quantitatively similar, and mainly due to metabolism (which represented 96% of the removal of 3H-adrenaline and 98% of the removal of 3H-noradenaline). O-methylation predominated for 3H-adrenaline: O-methylated and deaminated metabolites (3H-OMDA) and 3H-metanephrine (3H-MN) were the most abundant metabolites, accounting for 63% and 34% of total metabolite formation, respectively. Deamination predominated for 3H-noradrenaline: 3H-OMDA and 3H-dihydroxymandelic acid (3H-DOMA) were the most abundant metabolites, representing respectively 56% and 36% of total metabolite formation. The following activities of monoamine oxidase and catechol-O-methyl transferase were determined for 3H-noradrenaline: kCOMT 0.70 +/- 0.15 min-1 and kMAO 2.27 +/- 0.14 min-1. In experiments with 3H-noradrenaline, inhibition of monoamine oxidase reduced the formation of 3H-OMDA and deaminated metabolites [3H-dihydroxphenylglycol (3H-DOPEG) and 3H-DOMA] and increased the formation of 3H-normetanephrine (3H-NMN). Inhibition of catechol-O-methyl transferase, on the other hand, decreased 3H-NMN and increased 3H-DOPEG formation. When both enzymes were inhibited, the formation of all metabolites was strongly reduced but surprisingly there was no accumulation of 3H-amines in the cells, as the cell: medium ratio for 3H-noradrenaline or 3H-adrenaline was about unity.(ABSTRACT TRUNCATED AT 250 WORDS)
Publication Date: 1993-11-01
Journal: Naunyn-Schmiedeberg's archives of pharmacology


dopeg(15)

The role of MAO-A and MAO-B in the metabolic degradation of noradrenaline in human arteries.
1. Segments of human cystic, gastric and ileocolic arteries were obtained from patients undergoing surgery. 2. Segments of arterial tissues, the noradrenaline content of which ranged between 0.27 and 0.52 microg g(-1), were incubated with 0.1 micromol l(-1) [3H]-noradrenaline for 30 min and the accumulation of the amine as well as the formation of metabolites was measured. 3. In all the arteries, oxidative deamination predominated over O-methylation; the mean values of the deaminated and O-methylated metabolites formed for the three arteries were 247.6 and 82.4 pmol g(-1) tissue, respectively. Dihydroxymandelic acid (DOMA) was the most abundant metabolite. 4. Both clorgyline (a selective MAO-A inhibitor) and selegiline (a selective MAO-B inhibitor) reduced the formation of dihydroxyphenylglycol (DOPEG), DOMA and O-methylated-deaminated metabolites (OMDA), and increased that of normetanephrine (NMN). However, clorgyline depressed the formation of DOPEG more than that of DOMA, while selegiline depressed the formation of DOMA more than that of DOPEG. 5. In conclusion, three major differences distinguish the metabolism of noradrenaline by human arteries from that observed in other species: (1) the large predominance of deamination over O-methylation; (2) the extremely high formation of DOMA; and (3) the relative lack of selectivity of clorgyline and selegiline for MAO-A and B, respectively. Since the arterial vessels used were collected from patients older than 60 years, the morphological changes depending on age may explain the increase in DOMA formation.
Publication Date: 1998-09-08
Journal: Journal of autonomic pharmacology