pubmed > TP53 > 7

Targeted Sequencing of Ascites and Peritoneal Washing Fluid of Patients With Gastrointestinal Cancers and Their Clinical Applications and Limitations.
Cytology from gastrointestinal (GI) cancers is frequently obtained from ascites and peritoneal washing fluids. Examination of ascites and peritoneal washing fluids from patients with GI cancers can help in the tumor staging and prognosis. Tumor-derived DNA in these cytology samples can be a target for next generation sequencing (NGS). Targeted NGS was evaluated in ascites and peritoneal washing samples obtained from 33 patients with GI cancers. These sequences were compared with those from tumor tissue samples, and correlated with cytopathologic findings of the ascites and peritoneal fluid samples. The correlation between fluid and tissue genotyping results was 25%, with a sensitivity of 21.43%. The volume of tumor contained within the fluid samples was low, ranging from ~0 to 10%. Importantly, the sensitivity of detection of somatic mutations in the fluid samples could be increased to 69.2% by assessing samples containing >2% tumor volume. Evaluation of cells from ascitic fluid showed the presence of KRAS, TP53, and CDH1 mutations in 33, 13, and 7%, respectively, of patients with pancreatic cancer, and the presence of KRAS, TP53, and APC mutations in 25, 12, and 13%, respectively, of patients with gastric cancer. Ascites of one of the latter patients acquired KRAS mutation, which was a novel mutation during metastasis. Targeted NGS of ascites and peritoneal washing fluid have clinical implications, as well as limitations, in patients with GI cancers. NGS-based cytology examination may expand cytomolecular practices in GI cancer patients.
Publication Date: 2021-08-03
Journal: Frontiers in oncology

Total thyroidectomy can still remain the method of choice in some Bethesda III cases.
The latest WHO classification of tumours of endocrine organs defines new units of borderline thyroid tumours (BTT). The aim of our study was to evaluate ultrasonographic and cytological features, mutation profile and surgery treatment in rare thyroid tumours. An analysis of 8 BTT out of 487 patients, who underwent thyroid surgery between June 2016 and June 2020. The definitive diagnosis was made postoperatively by extensive histopathological examination. Molecular genetic analysis of genes associated with thyroid oncology (BRAF, HRAS, KRAS, NRAS, TERT, TP53, fused genes) were performed from one FNAB, and 7 formalin-fixed paraffin-embedded (FFPE) samples. BTT were found in a total of 8 patients (1.6%), with a predominance of men with respect to other operated patients. FNAB samples were classified in the Bethesda system as Bethesda I, Bethesda II and Bethesda III in one, four and three cases, respectively. Hemithyroidectomy and total thyroidectomy were performed equally in four patients. The histopathological diagnosis revealed non-invasive encapsulated follicular neoplasm with papillary-like nuclear features (NIFTP) in three patients, follicular tumour of uncertain malignant potential (FT-UMP) in three patients, well differentiated tumour of uncertain malignant potential (WDT-UMP) in one patient, and hyalinizing trabecular tumour (HTT) in one case. In NIFTP cases mutation in HRAS gene in one patient together with probable pathogenic variant in TP53 gene and in NRAS gene in two patients were detected. In HTT patient PAX8/GLIS3 fusion gene was detected. The surgical treatment of BTT is necessarily individual influenced by preoperative clinical, ultrasonographic, cytological and molecular genetic findings, and the presence of other comorbidities.
Publication Date: 2021-07-21
Journal: Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia

Clinicopathological and genomic features in patients with head and neck neuroendocrine carcinoma.
Neuroendocrine carcinoma (NEC) of the head and neck is a rare type of malignancy, accounting for only 0.3% of all head and neck cancers, and its clinicopathological and genomic features have not been fully characterized. We conducted a retrospective analysis of 27 patients with poorly differentiated NEC of the head and neck seen at our institution over a period of 15 years. Patient characteristics, adopted therapies, and clinical outcomes were reviewed based on the medical records. Pathological analysis and targeted sequencing of 523 cancer-related genes were performed using evaluable biopsied/resected specimens based on the clinical data. The most common tumor locations were the paranasal sinus (33%) and the oropharynx (19%). Eighty-one percent of the patients had locally advanced disease. The 3-year overall survival rates in all patients and in the 17 patients with locally advanced disease who received multimodal curative treatments were 39% and 53%, respectively. Histologically, large cell neuroendocrine carcinoma was the predominant subtype (58% of evaluable cases), and the Ki-67 labeling index ranged from 59 to 99% (median: 85%). Next-generation sequencing in 14 patients identified pathogenic/likely pathogenic variants in TP53, RB1, PIK3CA-related genes (PREX2, PIK3CA, and PTEN), NOTCH1, and SMARCA4 in six (43%), three (21%), two (14%), two (14%), and one (7%) patients, respectively. Sequencing also detected the FGFR3-TACC3 fusion gene in one patient. The median value of the total mutational burden (TMB) was 7.1/Mb, and three patients had TMB ≥ 10. Regardless of the aggressive pathological features, our data revealed favorable clinical characteristics in the patients with locally advanced disease who received curative treatment. The lower TP53 and RB1 mutation prevalence rates compared to those described for small cell lung cancer suggests the biological heterogeneity of NEC in different parts of the body. Furthermore, the FGFR3-TACC3 fusion gene and mutations in genes encoding the components of the NOTCH and PI3K/AKT/mTOR pathways found in our study may be promising targets for NEC of the head and neck.
Publication Date: 2021-07-12
Journal: Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc

TP53 mutations in circulating tumor DNA in advanced epidermal growth factor receptor-mutant lung adenocarcinoma patients treated with gefitinib.
Tumor protein p53 (TP53) is a tumor suppressor gene and TP53 mutations are associated with poor prognosis in non-small cell lung cancer. However, the in-depth classification of TP53 and its relationship with treatment response and prognosis in epidermal growth factor receptor (EGFR)-mutant tumors treated with EGFR tyrosine kinase inhibitors are unclear. Circulating tumor DNA was prospectively collected at baseline in advanced treatment-naïve EGFR-mutant lung adenocarcinoma patients treated with gefitinib in an open-label, single-arm, prospective, multicenter, phase 2 clinical trial (BENEFIT trial) and analyzed using next-generation sequencing. Survival was estimated using the Kaplan-Meier method. Of the 180 enrolled patients, 115 (63.9%) harbored TP53 mutations. The median progression-free survival (PFS) and overall survival (OS) of patients with TP53-wild type tumors were significantly longer than those of patients with TP53-mutant tumors. Mutations in exons 5-8 accounted for 80.9% of TP53 mutations. Mutations in TP53 exons 6 and 7 were significantly associated with inferior PFS and OS compared to wild-type TP53. TP53 mutation also influenced the prognosis of patients with different EGFR mutations. Patients with TP53 and EGFR exon 19 mutations had significantly longer PFS and OS than patients with TP53 and EGFR L858R mutations, and both groups had worse survival than patients with only EGFR mutations. Patients with TP53 mutations, especially in exons 6 and 7, had a lower response rate and shorter PFS and OS when treated with gefitinib. Moreover, TP53 exon 5 mutation divided TP53 mutations in disruptive and non-disruptive types.
Publication Date: 2021-07-01
Journal: Translational oncology

Dynamics of circulating tumor DNA during postoperative radiotherapy in patients with residual triple-negative breast cancer following neoadjuvant chemotherapy: a prospective observational study.
This study was performed to evaluate circulating tumor DNA (ctDNA) kinetics during postoperative radiotherapy (PORT) in patients with residual triple-negative breast cancer (TNBC) at surgery following neoadjuvant chemotherapy (NAC). Stage II/III patients with post-NAC residual TNBC who required PORT were prospectively included in this study between March 2019 and July 2020. For 11 TNBC patients, next-generation sequencing targeting 38 genes was conducted in 55 samples, including tumor tissue, three plasma samples, and leukocytes from each patient. The plasma samples were collected at three-time points; pre-PORT (T0), after 3 weeks of PORT (T1), and 1 month after PORT (T2). Serial changes in ctDNA variant allele frequency (VAF) were analyzed. Somatic variants were found in the tumor specimens in 9 out of 11 (81.8%) patients. Mutated genes included TP53 (n = 7); PIK3CA (n = 2); and AKT1, APC, CSMD3, MYC, PTEN, and RB1 (n = 1). These tumor mutations were not found in plasma samples. Plasma ctDNA variants were detected in three (27.3%) patients at T0. Mutations in EGFR (n = 1), CTNNB1 (n = 1), and MAP2K (n = 1) was identified with ctDNA analysis. In two (18.2%) patients, the ctDNA VAF decreased through T1 and T2 while increasing at T2 in one (9.1%) patient. After a median follow-up of 22 months, no patient showed cancer recurrence. Among patients with post-NAC residual TNBC, more than a quarter exhibited a detectable amount of ctDNA after curative surgery. The ctDNA VAF changed variably during the course of PORT. Therefore, ctDNA kinetics can serve as a biomarker for optimizing adjuvant treatment.
Publication Date: 2021-06-22
Journal: Breast cancer research and treatment

Integrated Genomic Analyses of Cutaneous T Cell Lymphomas Reveal the Molecular Bases for Disease Heterogeneity.
Cutaneous T cell lymphomas (CTCLs) are a clinically heterogeneous collection of lymphomas of the skin-homing T cell. To identify molecular drivers of disease phenotypes, we assembled a cohort of CTCLs with representative samples from diverse disease subtypes and stages. Via DNA/RNA-sequencing, immunophenotyping, and ex vivo functional assays, we identified the landscape of putative driver genes, elucidated genetic relationships between CTCLs across disease stages, and inferred molecular subtypes in patients with stage-matched leukemic disease. Collectively, our analysis identified 86 putative driver genes, including 19 genes not previously implicated in this disease. 2 mutations have never been previously described for any cancer. Functionally, multiple mutations augment T cell receptor-dependent proliferation, highlighting the importance of this pathway in lymphomagenesis. To identify putative genetic causes of disease heterogeneity, we examined the distribution of driver genes across clinical cohorts. There are broad similarities across disease stages. Many driver genes are shared by mycosis fungoides (MF) and Sezary syndrome (SS). However, there are significantly more structural variants in leukemic disease, leading to highly recurrent deletions of putative tumor suppressors that are uncommon in early-stage skin-centered MF. For example, TP53 is deleted in 7% and 87% of MF and SS, respectively. In both human and mouse samples, PD1 mutations drive aggressive behavior. PD1 wild-type lymphomas show features of T cell exhaustion. PD1 deletions are sufficient to reverse the exhaustion phenotype, promote a FOXM1-driven transcriptional signature, and predict significantly worse survival. Collectively, our findings clarify CTCL genetics and provide novel insights into pathways driving diverse disease phenotypes.
Publication Date: 2021-06-12
Journal: Blood

Molecular predictors of the outcome of paclitaxel plus carboplatin neoadjuvant therapy in high-grade serous ovarian cancer patients.
Patients with advanced high-grade serous ovarian cancer (HGSOC) are usually treated with paclitaxel and carboplatin; however, predictive markers for this drug combination are unknown. Tumor samples from 71 consecutive HGSOC patients, who received neoadjuvant chemotherapy with paclitaxel and carboplatin, were subjected to molecular analysis. BRCA1/2 germline mutation carriers (n = 22) had longer treatment-free interval (TFI) than non-carriers (n = 49) (9.5 months vs. 3.8 months; P = 0.007). Fifty-one HGSOCs had sufficient quality of tumor DNA for the next-generation sequencing (NGS) analysis by the SeqCap EZ CNV/LOH Backbone Design panel. All 13 tumors obtained from BRCA1/2 germline mutation carriers and 12 sporadic HGSOCs showed a high number of evenly spread chromosomal breaks, which was defined as a BRCAness phenotype; median TFI for this combined group approached 9.5 months. The remaining 26 HGSOCs had similarly high global LOH score (above 20%); however, in contrast to BRCAness tumors, LOH involved large chromosomal segments; these patients had significantly lower TFI (3.7 months; P = 0.006). All patients with CCNE1 amplification (n = 7), TP53 R175H substitution (n = 6), and RB1 mutation (n = 4) had poor response to paclitaxel plus carboplatin. This study describes a cost-efficient method of detecting the BRCAness phenotype, which is compatible with the laboratory-scale NGS equipment. Some molecular predictors allow the identification of potential non-responders to paclitaxel plus carboplatin, who may need to be considered for other treatment options.
Publication Date: 2021-06-04
Journal: Cancer chemotherapy and pharmacology

MAP-kinase and JAK-STAT pathways dysregulation in plasmablastic lymphoma.
Plasmablastic lymphoma (PBL) is an aggressive B-cell lymphoma with an immunoblastic/large cell morphology and plasmacytic differentiation. The differential diagnosis with Burkitt lymphoma (BL), plasma cell myeloma (PCM) and some variants of diffuse large B-cell lymphoma (DLBCL) may be challenging due to the overlapping morphological, genetic and immunophenotypic features. Furthermore, the genomic landscape in PBL is not well known. To characterize the genetic and molecular heterogeneity of these tumors, we investigated thirty-four PBL using an integrated approach, including fluorescence in situ hybridization, targeted sequencing of 94 B-cell lymphoma related genes, and copy-number arrays. PBL were characterized by high genetic complexity including MYC translocations (87%), gains of 1q21.1-q44, trisomy 7, 8q23.2-q24.21, 11p13-p11.2, 11q14.2-q25, 12p and 19p13.3-p13.13, losses of 1p33, 1p31.1-p22.3, 13q and 17p13.3-p11.2, and recurrent mutations of STAT3 (37%), NRAS and TP53 (33%), MYC and EP300 (19%) and CARD11, SOCS1 and TET2 (11%). Pathway enrichment analysis suggested a cooperative action between MYC alterations and MAPK (49%) and JAK-STAT (40%) signaling pathways. Of note, EBVnegative PBL cases had higher mutational and copy-number load and more frequent TP53, CARD11 and MYC mutations, whereas EBV-positive PBL tended to have more mutations affecting the JAK-STAT pathway. In conclusion, these findings further unravel the distinctive molecular heterogeneity of PBL identifying novel molecular targets and the different genetic profile of these tumors related to EBV infection.
Publication Date: 2021-05-07
Journal: Haematologica

Glioblastomas with primitive neuronal component harbor a distinct methylation and copy-number profile with inactivation of TP53, PTEN, and RB1.
Glioblastoma IDH-wildtype presents with a wide histological spectrum. Some features are so distinctive that they are considered as separate histological variants or patterns for the purpose of classification. However, these usually lack defined (epi-)genetic alterations or profiles correlating with this histology. Here, we describe a molecular subtype with overlap to the unique histological pattern of glioblastoma with primitive neuronal component. Our cohort consists of 63 IDH-wildtype glioblastomas that harbor a characteristic DNA methylation profile. Median age at diagnosis was 59.5 years. Copy-number variations and genetic sequencing revealed frequent alterations in TP53, RB1 and PTEN, with fewer gains of chromosome 7 and homozygous CDKN2A/B deletions than usually described for IDH-wildtype glioblastoma. Gains of chromosome 1 were detected in more than half of the cases. A poorly differentiated phenotype with frequent absence of GFAP expression, high proliferation index and strong staining for p53 and TTF1 often caused misleading histological classification as carcinoma metastasis or primitive neuroectodermal tumor. Clinically, many patients presented with leptomeningeal dissemination and spinal metastasis. Outcome was poor with a median overall survival of only 12 months. Overall, we describe a new molecular subtype of IDH-wildtype glioblastoma with a distinct histological appearance and genetic signature.
Publication Date: 2021-04-21
Journal: Acta neuropathologica

Targeted gene panels identify a high frequency of pathogenic germline variants in patients diagnosed with a hematological malignancy and at least one other independent cancer.
The majority of studies assessing the contribution of pathogenic germline variants (PGVs) to cancer predisposition have focused on patients with single cancers. We analyzed 45 known cancer predisposition genes (CPGs) in germline samples of 202 patients with hematological malignancies (HMs) plus one or more other independent cancer managed at major tertiary medical centers on two different continents. This included 120 patients with therapy-related myeloid neoplasms (t-MNs), where the HM occurred after cytotoxic treatment for a first malignancy, and 82 patients with multiple cancers in which the HM was not preceded by cytotoxic therapy (MC-HM). Using American College of Medical Genetics/Association for Molecular Pathology variant classification guidelines, 13% of patients had PGVs, most frequently identified in CHEK2 (17% of PGVs), BRCA1 (13%), DDX41 (13%), and TP53 (7%). The frequency of PGVs in MC-HM was higher than in t-MN, although not statistically significant (18 vs. 9%; p = 0.085). The frequency of PGVs in lymphoid and myeloid HM patients was similar (19 vs. 17.5%; p > 0.9). Critically, patients with PGVs in BRCA1, BRCA2 or TP53 did not satisfy current clinical phenotypic criteria for germline testing. Our data suggest that a personal history of multiple cancers, one being a HM, should trigger screening for PGVs.
Publication Date: 2021-04-15
Journal: Leukemia

Venetoclax with azacitidine or decitabine in blast-phase myeloproliferative neoplasm: A multicenter series of 32 consecutive cases.
Venetoclax (Ven) combined with a hypomethylating agent (HMA) has now emerged as an effective treatment regimen for acute myeloid leukemia, in both de novo and relapsed/refractory setting. The current multicenter study retrospectively examined Ven + HMA treatment outcome among 32 patients (median age 69 years; 59% males) with blast-phase myeloproliferative neoplasm (MPN-BP). Pre-leukemic phenotype included essential thrombocythemia (ET)/post-ET myelofibrosis (34%), polycythemia vera (PV)/post-PV myelofibrosis (38%) and primary myelofibrosis (28%). Twenty-nine study patients were fully annotated cytogenetically and molecularly (NGS): 69% harbored complex karyotype and/or mutations, including TP53 (41%), IDH1/2 (21%), ASXL1 (21%), N/KRAS (14%), SRSF2 (10%), EZH2 (10%) and U2AF1 (7%). All patients received Ven combined with either azacitidine (n = 12) or decitabine (n = 20); either up front (n = 23) or after failing another induction therapy (n = 9). Complete remission with (CR) or without (CRi) count recovery was achieved in 14 (44%) patients and was more likely to occur in the absence of pre-leukemic PV/post-PV myelofibrosis phenotype (p < .01), complex karyotype (p < .01) or K/NRAS (p = .03) mutations; seven of eight patients (88%) without vs four of 21 (19%) with complex karyotype or K/NRAS mutation achieved CR/CRi (p < .01); all 11 informative patients with pre-leukemic PV/post-PV myelofibrosis phenotype displayed complex karyotype (p < .01). In contrast, neither TP53 (p = .45) nor IDH1/2 (p = .63) mutations affected response. Compared to historical controls treated with HMA alone (n = 26), the CR/CRi rate (44% vs 4%) and median survival (8 vs 5.5 months) were more favorable with Ven + HMA, but without significant difference in overall survival. Importantly, six patients with CR/CRi subsequently received allogeneic hematopoietic stem cell transplant (AHSCT). Note, Ven + HMA produces robust CR/CRi rates in MPN-BP, especially in the absence of RAS mutations and complex karyotype, thus enabling AHSCT, in some patients.
Publication Date: 2021-04-13
Journal: American journal of hematology

Prognostic impact of the adverse molecular-genetic profile on long-term outcomes following allogeneic hematopoietic stem cell transplantation in acute myeloid leukemia.
The impact of adverse risk genetic profiles on outcomes in acute myeloid leukemia (AML) patients following allogeneic hematopoietic stem cell transplantation (HCT) has not been fully elucidated. Accordingly, we have profiled somatic mutations at diagnosis using next-generation sequencing (NGS) in 178 AML patients who received allogeneic HCT. NGS revealed 598 somatic mutations in 165/178 patients (92.7%). Frequently mutated genes include DNMT3A, TET2, NPM1, RUNX1, IDH2, and FLT3. Commonly detected cytogenetic profiles include normal karyotype, trisomy 8, monosomal karyotype (MK), deletion 5, complex karyotype (CK), and monosomy 7. In univariate analyses, TP53 mutation, MK, CK, and monosomy 7 were associated with decreased overall survival (OS), relapse-free survival (RFS), and a higher relapse incidence (RI). We defined adverse molecular-genetic profile as harboring at least one of the molecular/genetic abnormalities of TP53 mutation, MK, CK, monosomy 7, and deletion 5. The patients harboring adverse molecular-genetic profile (n = 30) showed a lower 2-year OS (24.9% vs. 57.9%; p = 0.003), RFS (23.7% vs. 57.9%; p = 0.002), and higher RI (47.2% and 17.2%; p = 0.001) after HCT when compared to patients without those lesions. Multivariate analysis confirmed adverse molecular-genetic profile as an independent prognostic factor, associated with decreased OS (HR 2.19), RFS (HR 2.23), and higher RI (HR 2.94).
Publication Date: 2021-03-27
Journal: Bone marrow transplantation

Salivary Mucinous Adenocarcinoma Is a Histologically Diverse Single Entity With Recurrent AKT1 E17K Mutations: Clinicopathologic and Molecular Characterization With Proposal for a Unified Classification.
Mucin-producing salivary adenocarcinomas were historically divided into separate colloid carcinoma, papillary cystadenocarcinoma, and signet ring cell carcinoma diagnoses based on histologic pattern, but have recently been grouped together in the adenocarcinoma not otherwise specified category. It is currently unclear if these tumors represent 1 or more distinct entities and how they are related to well-circumscribed papillary mucinous lesions with recurrent AKT1 E17K mutations that were recently described as salivary intraductal papillary mucinous neoplasm. Here, we sought to evaluate the clinicopathologic and molecular features of salivary mucinous adenocarcinomas to clarify their classification. We identified 17 invasive mucin-producing salivary adenocarcinomas, 10 with a single histologic pattern, and 7 with mixed patterns. While most tumors demonstrated papillary growth (n=15), it was frequently intermixed with colloid (n=6) and signet ring (n=3) architecture with obvious transitions between patterns. All were cytokeratin 7 positive (100%) and cytokeratin 20 negative (0%). Next-generation sequencing performed on a subset demonstrated recurrent AKT1 E17K mutations in 8 cases (100%) and TP53 alterations in 7 cases (88%). Of 12 cases with clinical follow-up (median: 17 mo), 4 developed cervical lymph node metastases, all of which had colloid or signet ring components. Overall, overlapping histologic and immunohistochemical features coupled with recurrent AKT1 E17K mutations across patterns suggests that mucin-producing salivary adenocarcinomas represent a histologically diverse single entity that is closely related to tumors described as salivary intraductal papillary mucinous neoplasm. We propose a unified mucinous adenocarcinoma category subdivided into papillary, colloid, signet ring, and mixed subtypes to facilitate better recognition and classification of these tumors.
Publication Date: 2021-03-20
Journal: The American journal of surgical pathology

Unbalanced translocation der(5;17) resulting in a TP53 loss as recurrent aberration in myelodysplastic syndrome and acute myeloid leukemia with complex karyotype.
A complex karyotype, detected in myelodysplastic syndrome (MDS) and acute myeloid leukaemia (AML), is associated with a reduced median survival. The most frequent chromosomal aberrations in complex karyotypes are deletions of 5q and 17p harboring the tumor suppressor gene TP53. The unbalanced translocation der(5;17) involving chromosome 5q and 17p is a recurrent aberration in MDS/AML, resulting in TP53 loss. We analyzed the karyotypes of 178 patients with an unbalanced translocation der(5;17) using fluorescence R-/G-banding analysis. Whenever possible, fluorescence in situ hybridization (FISH) (n = 138/141), multicolor FISH (n = 8), telomere length measurement (n = 9), targeted DNA sequencing (n = 13), array-CGH (n = 7) and targeted RNA sequencing (n = 2) were conducted. The der(5;17) aberration was accompanied with loss of genetic material in 7q (53%), -7 (27%), gain of 21q (29%), +8 (17%) and - 18 (16%) and all analyzed patients (n = 13) showed a (likely) pathogenic variant inTP53. The der(5;17) cohort showed significantly shortened telomeres in comparison to the healthy age-matched controls (P < .05), but there was no significant telomere shortening in comparison to MDS/AML patients with a complex karyotype without der(5;17). No fusion genes resulted from the unbalanced translocation. This study demonstrates that the unbalanced translocation der(5;17) is associated with a biallelic inactivation of TP53 due to a deletion of TP53 in one allele and a pathogenic variant of the second TP53 allele. Since the breakpoints are located within (near-) heterochromatic regions, alterations of DNA methylation or histone modifications may be involved in the generation of der(5;17).
Publication Date: 2021-01-25
Journal: Genes, chromosomes & cancer

High-resolution melting effectively pre-screens for TP53 mutations before direct sequencing in patients with diffuse glioma.
TP53 mutations are important molecular markers in diffuse astrocytic tumors and medulloblastomas. We examined the efficacy of a pre-screening method for high-resolution melting (HRM) analysis of TP53 mutation before direct sequencing using samples from patients with diffuse glioma. Surgical samples from 64 diffuse gliomas were classified based on the 2016 World Health Organization (WHO) histopathological grading system and the cIMPACT-NOW (consortium to inform molecular and practical approaches to CNS tumor taxonomy-not official WHO) update. TP53 mutations from exon 5 to exon 8 were assessed by direct sequencing. The results of HRM and p53 immunohistochemistry (IHC) analysis were compared by recording the sensitivity, specificity, and false negative and false positive rates. Direct sequencing detected TP53 mutations in 18 of 64 samples (28.1%): diffuse astrocytoma, IDH-mutant (n = 3); diffuse astrocytoma, IDH-wild type (n = 1); anaplastic astrocytoma, IDH-mutant (n = 3); anaplastic astrocytoma, IDH-wild type (n = 4); and glioblastoma, IDH-wild type (n = 7). A total of 22 mutations was detected in the 18 samples; 4 samples exhibited duplicate missense mutations. Sensitivity and specificity were 0.96 and 0.96, respectively, for HRM analysis; they were 0.89 and 0.52, respectively, for p53 IHC. Overall accuracy was 0.98 for HRM and 0.63 for IHC. HRM analysis is a good pre-screening method for the detection of TP53 mutation before direct sequencing.
Publication Date: 2021-01-18
Journal: Human cell

Cytogenomic Abnormalities in 19 Cases of Salivary Gland Tumors of Parotid Gland Origin.
Salivary gland tumors (SGTs) of parotid origin are a group of diverse neoplasms which are difficult to classify due to their rarity and similar morphologic patterns. Chromosome analysis can detect clonal abnormalities, and array comparative genomic hybridization (aCGH) analysis can define copy number alterations (CNAs) from tumor specimens. Of the 19 cases of various types of SGTs submitted for cytogenomic analyses, an abnormal clone was detected in nine cases (47%), and CNAs were detected in 14 cases (74%). Recurrent rearrangements involving the PLAG1 gene at 8q12, recurrent CNAs including deletions of 6q, 9p (CDKN2A), and 17p (TP53), loss of Y chromosome, and gain of chromosome 7 were defined from these cases. Combined karyotyping and aCGH analyses could improve diagnostic yield. Future study for more precisive correlation of SGT classification with cytogenomic abnormalities will facilitate better diagnosis and treatment.
Publication Date: 2020-12-22
Journal: Case reports in genetics

Massively parallel sequencing analysis of 68 gastric-type cervical adenocarcinomas reveals mutations in cell cycle-related genes and potentially targetable mutations.
Gastric-type cervical adenocarcinoma (GCA) is an aggressive type of endocervical adenocarcinoma characterized by mucinous morphology, gastric-type mucin, lack of association with human papillomavirus (HPV) and resistance to chemo/radiotherapy. We characterized the landscape of genetic alterations in a large cohort of GCAs, and compared it with that of usual-type HPV-associated endocervical adenocarcinomas (UEAs), pancreatic adenocarcinomas (PAs) and intestinal-type gastric adenocarcinomas (IGAs). GCAs (n = 68) were subjected to massively parallel sequencing targeting 410-468 cancer-related genes. Somatic mutations and copy number alterations (CNAs) were determined using validated bioinformatics methods. Mutational data for UEAs (n = 21), PAs (n = 178), and IGAs (n = 148) from The Cancer Genome Atlas (TCGA) were obtained from cBioPortal. GCAs most frequently harbored somatic mutations in TP53 (41%), CDKN2A (18%), KRAS (18%), and STK11 (10%). Potentially targetable mutations were identified in ERBB3 (10%), ERBB2 (8%), and BRAF (4%). GCAs displayed low levels of CNAs with no recurrent amplifications or homozygous deletions. In contrast to UEAs, GCAs harbored more frequent mutations affecting cell cycle-related genes including TP53 (41% vs 5%, p < 0.01) and CDKN2A (18% vs 0%, p = 0.01), and fewer PIK3CA mutations (7% vs 33%, p = 0.01). TP53 mutations were less prevalent in GCAs compared to PAs (41% vs 56%, p < 0.05) and IGAs (41% vs 57%, p < 0.05). GCAs showed a higher frequency of STK11 mutations than PAs (10% vs 2%, p < 0.05) and IGAs (10% vs 1%, p < 0.05). GCAs harbored more frequent mutations in ERBB2 and ERBB3 (9% vs 1%, and 10% vs 0.5%, both p < 0.01) compared to PAs, and in CDKN2A (18% vs 1%, p < 0.05) and KRAS (18% vs 6%, p < 0.05) compared to IGAs. GCAs harbor recurrent somatic mutations in cell cycle-related genes and in potentially targetable genes, including ERBB2/3. Mutations in genes such as STK11 may be used as supportive evidence to help distinguish GCAs from other adenocarcinomas with similar morphology in metastatic sites.
Publication Date: 2020-12-16
Journal: Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc

Predictive and Prognostic Potential of TP53 in Patients With Advanced Non-Small-Cell Lung Cancer Treated With EGFR-TKI: Analysis of a Phase III Randomized Clinical Trial (CTONG 0901).
Mutations in TP53 are commonly found in patients with epidermal growth factor receptor (EGFR) mutant advanced non-small-cell lung cancer (NSCLC). In this study, we determined the predictive and prognostic potential of different subtypes of TP53 using data from a phase III randomized trial (CTONG 0901). The trial enrolled 195 patients who had undergone next-generation sequencing of 168 genes before treatment with EGFR tyrosine kinase inhibitors. Mutations in TP53 (exon 4 or 7, other mutations, and wild-type) were analyzed based on the therapeutic response and survival. A Cox proportional hazards model was used to determine the potential of the predictive and prognostic factors. All 195 patients harbored activating EGFR mutations: the most common concomitant mutations were TP53 (134/195, 68.7%), CTNNB1 (20/195, 10.3%), and RB1 (16/195, 8.2%). The genetic profiles between patient subgroups administered first-line (132, 67.7%) or later-line (63, 32.3%) treatments did not significantly differ. The median progression-free survival in patients with mutations in exon 4 or 7 of TP53, other TP53 mutations, and wild-type TP53 were 9.4, 11.0, and 14.5 months (P = .009), respectively. Overall survival times were 15.8, 20.0, and 26.1 months (P = .004), respectively. Mutations in exon 4 or 7 of TP53 served as independent prognostic factors for progression-free (P = .001) and overall survival (P = .004) in patients. Mutations in exon 4 and/or 7 in TP53 are promising predictive and prognostic indicators in EGFR-mutated NSCLC.
Publication Date: 2020-12-16
Journal: Clinical lung cancer

Targeted massively parallel sequencing of mature lymphoid neoplasms: assessment of empirical application and diagnostic utility in routine clinical practice.
Massively parallel sequencing (MPS) has become a viable diagnostic tool to interrogate genetic profiles of numerous tumors but has yet to be routinely adopted in the setting of lymphoma. Here, we report the empirical application of a targeted 40-gene panel developed for use in mature lymphoid neoplasms (MLNs) and report our experience on over 500 cases submitted for MPS during the first year of its clinical use. MPS was applied to both fresh and fixed specimens. The most frequent diagnoses were diffuse large B-cell lymphoma (116), chronic lymphocytic leukemia/small lymphocytic lymphoma (60), marginal zone lymphoma (52), and follicular lymphoma (43), followed by a spectrum of mature T-cell neoplasms (40). Of 534 cases submitted, 471 generated reportable results in MLNs, with disease-associated variants (DAVs) detected in 241 cases (51.2%). The most frequent DAVs affected TP53 (30%), CREBBP (14%), MYD88 (14%), TNFRSF14 (10%), TNFAIP3 (10%), B2M (7%), and NOTCH2 (7%). The bulk of our findings confirm what is reported in the scientific literature. While a substantial majority of mutations did not directly impact diagnosis, MPS results were utilized to either change, refine, or facilitate the final diagnosis in ~10.8% of cases with DAVs and 5.5% of cases overall. In addition, we identified preanalytic variables that significantly affect assay performance highlighting items for specimen triage. We demonstrate the technical viability and utility of the judicious use of a targeted MPS panel that may help to establish general guidelines for specimen selection and diagnostic application in MLNs in routine clinical practice.
Publication Date: 2020-12-15
Journal: Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc

Phase 2 study of the safety and efficacy of umbralisib in patients with CLL who are intolerant to BTK or PI3Kδ inhibitor therapy.
Intolerance is the most common reason for kinase inhibitor (KI) discontinuation in chronic lymphocytic leukemia (CLL). Umbralisib, a novel highly selective phosphatidylinositol 3-kinase δ (PI3Kδ)/CK1ε inhibitor, is active and well tolerated in CLL patients. In this phase 2 trial (NCT02742090), umbralisib was initiated at 800 mg/d in CLL patients requiring therapy, who were intolerant to prior BTK inhibitor (BTKi) or PI3K inhibitor (PI3Ki) therapy, until progression or toxicity. Primary end point was progression-free survival (PFS). Secondary end points included time to treatment failure and safety. DNA was genotyped for CYP3A4, CYP3A5, and CYP2D6 polymorphisms. Fifty-one patients were enrolled (44 BTKi intolerant and 7 PI3Kδi intolerant); median age was 70 years (range, 48-96), with a median of 2 prior lines of therapy (range, 1-7), 24% had del17p and/or TP53 mutation, and 65% had unmutated IGHV. Most common adverse events (AEs) leading to prior KI discontinuation were rash (27%), arthralgia (18%), and atrial fibrillation (16%). Median PFS was 23.5 months (95% CI, 13.1-not estimable), with 58% of patients on umbralisib for a longer duration than prior KI. Most common (≥5%) grade ≥3 AEs on umbralisib (all causality) were neutropenia (18%), leukocytosis (14%), thrombocytopenia (12%), pneumonia (12%), and diarrhea (8%). Six patients (12%) discontinued umbralisib because of an AE. Eight patients (16%) had dose reductions and were successfully rechallenged. These are the first prospective data to confirm that switching from a BTKi or alternate PI3Ki to umbralisib in this BTKi- and PI3Ki-intolerant CLL population can result in durable well-tolerated responses.
Publication Date: 2020-12-02
Journal: Blood

tp53 pten(5)




tumor protein p53(5)



p 0 05(4)

genes tp53(4)

tp53 apc(4)

tp53 rb1(4)





2 6(3)

95 ci(3)

n 4(3)

n 6(3)


squamous cell carcinoma(3)


p 01(2)

5 6(2)

p 004(2)

p 0001(2)

kras pik3ca(2)

n 2(2)

n 25(2)

n 3(2)

del 17p(2)

n 13(2)

35 3(2)

pole pten(2)

braf kras(2)

10 3(2)

h2ax rad50(2)

2 6 33 3(1)

p 05(1)

group a3(1)

5 17(1)

n 62(1)

p 0 01(1)

19 34 12 34(1)

cdkn2a 13(1)

chek2 palb2(1)

ci 0 82-0 95(1)

26 102(1)

ci 8 0-44 2(1)

4 43 9(1)

337 70 8(1)

p 0 39(1)

433 72 9(1)

hr 2 49 p 0 0003(1)