pubmed > TP53 > egfr

Two progressed malignant phyllodes tumors of the breast harbor alterations in genes frequently involved in other advanced cancers.
The genomic landscape of phyllodes tumors (PTs) of the breast is not well defined, especially in patients with advanced disease. To shed light on this topic, paired primary and progressed tumor samples from two patients with malignant PTs were subjected to next-generation sequencing (NGS) followed by functional analysis of genetic alterations using two prediction tools. The DNA of both the primary tumor and distant metastases of Patient 1 and the primary and recurrent tumor of Patient 2 were subjected to molecular profiling. NGS with the FoundationOne® assay was performed in a commercial molecular pathology laboratory. Two in silico prediction tools were used to estimate the pathogenicity of indicated genetic alterations. In total, 38 genomic alterations were detected, of which 11 were predicted to be probably benign. In Patient 1, 14 aberrations were identified in the primary tumor and 17 in pulmonary metastases, 12 of which were identical. In the primary and recurrent tumor of Patient 2, 17 and 15 sequence variants, respectively, were found, with 13 overlapping findings. Affected genes included seven (TP53, TERT, APC, ARID1A, EGFR, KMT2D, and RB1) of the top 10 most frequently altered genes in other advanced cancer entities, as well as four actionable therapeutic targets (EGFR, KIT, PDGFRA, and BRIP1). Of note, seven genes coding for receptor tyrosine kinases were affected: three in Patient 1 and four in Patient 2. Several genes (e.g. EPHA3, EPHA7, and EPHB1) were shown to be altered for the first time in PTs. The two progressed malignant PTs investigated here share some of the major genetic events occurring in other advanced cancers.
Publication Date: 2021-08-18
Journal: Orphanet journal of rare diseases

Assessment of clonal expansion using CarcSeq measurement of lung cancer driver mutations and correlation with mouse strain- and sex-related incidence of spontaneous lung neoplasia.
Quantification of variation in levels of spontaneously occurring cancer driver mutations (CDMs) was developed to assess clonal expansion and predict future risk of neoplasm development. Specifically, an error-corrected next generation sequencing method, CarcSeq, and a mouse CarcSeq panel (analogous to human and rat panels) were developed and used to quantify low-frequency mutations in a panel of amplicons enriched in hotspot CDMs. Mutations in a subset of panel amplicons, Braf, Egfr, Kras, Stk11 and Tp53, were related to incidence of lung neoplasms at two years. This was achieved by correlating median absolute deviation (MAD) from the overall median mutant fraction (MF) measured in the lung DNA of 16-week-old male and female, B6C3F1 and CD-1 mice (10 mice/sex/strain) with percentages of spontaneous alveolar/bronchioloalveolar adenomas and carcinomas reported in bioassay control groups. 1,586 mouse lung mutants with MFs >1 x 10-4 were recovered. The ratio of non-synonymous to synonymous mutations was used to assess the proportion of recovered mutations conferring a positive selective advantage. The greatest ratio was observed in what is considered the most lung tumor-sensitive model examined, male B6C3F1 mice. Of the recurrent, non-synonymous mouse mutations recovered, 55.5% have been reported in human tumors, with many located in or around the mouse equivalent of human cancer hotspot codons. MAD for the same subset of amplicons measured in normal human lung DNA samples showed a correlation of moderate strength and borderline significance) with age (a cancer risk factor), as well as age-related cumulative lung cancer risk, suggesting MAD may inform species extrapolation.
Publication Date: 2021-08-11
Journal: Toxicological sciences : an official journal of the Society of Toxicology

Potential therapeutic targets and biological mechanisms of Centella asiatica on hepatic fibrosis: a study of network pharmacology.
Liver fibrosis is a common result of the repair process of various chronic liver diseases. This study is a network pharmacology study on the potential therapeutic targets and biological mechanisms of Centella asiatica for liver fibrosis. The chemical components and potential targets of Centella asiatica were screened through TCMSP, PubChem database, and Swiss Target Prediction database. The DisGeNET and GeneCards databases were used to obtain targets of HF. Venn diagrams were used to find key targets, and draw protein interaction maps. Cytoscape software was used to construct an interaction network map of drug-component-target-disease-pathway. The mechanisms of action were predicted through enrichment analysis and KEGG analysis. In total, 6 main components, 297 drug targets, 337 HF targets, and 48 drug-disease targets were obtained in Centella asiatica. The key targets involved IL6, TNF, VEGFA, TP53, IL1β, MMP9, CXCL8, EGFR, JUN, SRC, MMP2, and TGF-β, among others. A total of 1293 entries were obtained by Gene Ontology (GO) enrichment analysis, which mainly involved the regulation of reactive oxygen species metabolic process, the regulation of smooth muscle cells, and the regulation of DNA-binding transcription factor activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment mainly screened 191 pathways, including the MAPK signaling pathway, the relaxin signaling pathway, and the Toll-like receptor signaling pathway, among others. Centella asiatica may have a therapeutic effect on HF through multiple targets and pathways. Its mechanism is mainly related to the MAPK signaling pathway and the relaxin signaling pathway.
Publication Date: 2021-08-06
Journal: Annals of translational medicine

Retrospective analysis of eleven gene mutations, PD-L1 expression and clinicopathological characteristics in non-small cell lung cancer patients.
To investigate the associations among expression of programmed cell death ligand 1 (PD-L1), eleven mutated genes, and clinicopathological characteristics in 273 patients with non-small cell lung cancer (NSCLC). We retrospectively examined tumor PD-L1 expression in 247 surgically resected primary and 26 advanced NSCLC patients by immunohistochemistry using SP263 antibody assay. Gene mutations of EGFR, TP53, KRAS, PIK3CA, ERBB2, MET, RET, ALK, BRAF, ROS1, and APC were examined by NGS sequence. Data analysis was carried out using SPSS 22.0. The associations among PD-L1 expression, eleven mutated genes and clinicopathological characteristics were assessed by univariate and multivariate analysis. Among the total 273 patients, 68 (24.9%) patients were positive for PD-L1 expression. Data showed that mutated rate of EGFR gene was the highest with 63.0% (172/273), followed by TP53 (11.7%, 32/273) and KRAS (5.5%, 15/273). The female, non-smoker, and patients with adenocarcinoma (ADC) were more likely to have EGFR mutations. Multivariate logistic regression showed that PD-L1 expression was significantly associated with Non-ADC, lymphatic invasion, EGFR wild type and TP53 mutation (p = 0.041, <0.001, 0.004 and 0.014, respectively). Moreover, PD-L1 expression in adenocarcinoma was associated with lymphatic invasion, mutation of TP53 and KRAS gene (p = 0.012, <0.025 and 0.041, respectively). Mutations of EGFR, KRAS and TP53 should be routinely detected in clinical practice to better guide the immunotherapy for NSCLC patients. Future investigations are warranted to illustrate the potential mechanisms between driver mutations and PD-L1 expression for guiding immunotherapy in patients with NSCLC.
Publication Date: 2021-07-31
Journal: Asian journal of surgery

Determining the Traditional Chinese Medicine (TCM) Syndrome with the Best Prognosis of HBV-Related HCC and Exploring the Related Mechanism Using Network Pharmacology.
In traditional Chinese medicine (TCM), TCM syndrome is a key guideline, and Chinese materia medicas are widely used to treat hepatitis B virus- (HBV-) related hepatocellular carcinoma (HCC) according to different TCM syndromes. However, the prognostic value of TCM syndromes in HBV-related HCC patients has never been studied. A retrospective cohort of HBV-related HCC patients at Shenzhen Traditional Chinese Medicine Hospital from December 2005 to October 2017 was analyzed. The prognostic value of TCM syndromes in HBV-related HCC patients was assessed by Kaplan-Meier survival curves and Cox analysis, and the TCM syndrome with the best prognosis of HBV-related HCC patients was determined. To further study the relevant mechanisms, key Chinese materia medicas (KCMMs) for the TCM syndrome with the best prognosis were summarized, and network pharmacology was also performed. A total of 207 HBV-related HCC patients were included in this research, and we found that HBV-related HCC patients with TCM excess syndrome had better OS. Then, a total of eight KCMMs for TCM excess syndrome were identified, whose crucial ingredients included quercetin, beta-sitosterol, kaempferol, luteolin, and XH-14, and KCMMs could play a therapeutic role through MAPK, JAK-STAT, Wnt, Hippo, and other pathways. Moreover, TP53, SRC, STAT3, MAPK3, PIK3R1, HRAS, VEGFA, HSP90AA1, EGFR, and JAK2 were determined as the key targets. We propose a new research method of "prognosis of TCM syndromes-KCMMs-network pharmacology" to reveal the prognostic value of TCM syndromes and the potential mechanism by which TCM syndromes affect prognosis.
Publication Date: 2021-07-27
Journal: Evidence-based complementary and alternative medicine : eCAM

Driver and novel genes correlated with metastasis of non-small cell lung cancer: A comprehensive analysis.
Although mutations of genes are crucial events in tumorigenesis and development, the association between gene mutations and lung cancer metastasis is still largely unknown. The goal of this study is to identify driver and novel genes associated with non-small cell lung cancer (NSCLC) metastasis. Candidate genes were identified using a novel comprehensive analysis, which was based on bioinformatics technology and meta-analysis. Firstly, EGFR, KRAS, ALK, TP53, BRAF and PIK3CA were identified as candidate driver genes. Further meta-analysis identified that EGFR (Pooled OR 1.33, 95% CI 1.19, 1.50; P < .001) and ALK (Pooled OR 1.52, 95% CI 1.22, 1.89; P < .001) mutations were associated with distant metastasis of NSCLC. Besides, ALK (Pooled OR 2.40, 95% CI 1.71, 3.38; P < .001) mutation was associated with lymph node metastasis of NSCLC. In addition, thirteen novel gene mutations were identified to be correlated with NSCLC metastasis, including SMARCA1, GGCX, KIF24, LRRK1, LILRA4, OR2T10, EDNRB, NR1H4, ARID4A, PRKCI, PABPC5, ACAN and TLN1. Furthermore, elevated mRNA expression level of SMARCA1 and EDNRB was associated with poor overall survival in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), respectively. Additionally, pathway and protein-protein interactions network analyses found the two genes were correlated with epithelial-mesenchymal transition process. In conclusion, mutations of EGFR and ALK were significantly correlated with NSCLC metastasis. In addition, thirteen novel genes were identified to be associated with NSCLC metastasis, especially SMARCA1 in LUAD and EDNRB in LUSC.
Publication Date: 2021-07-24
Journal: Pathology, research and practice

Integration of clinicopathological and mutational data offers insight into lung cancer with tumor spread through air spaces.
Tumor spread through air spaces (STAS) was defined as a unique tumor invasion pattern in adenocarcinoma (ADC) by The World Health Organization Classification of Lung Tumors in 2015. Since then, STAS had been shown to be associated with local recurrence and poor survival results, as the typical signature and potential mechanisms of STAS remained unclear. Our objectives were to comprehensively demonstrate the clinicopathological and genetic signatures in STAS-positive lung cancer patients. The clinicopathological and gene alteration characteristics of 878 STAS-positive lung cancer patients were presented. Associations between parameters were evaluated using the Chi-square test, Fisher's exact test, and logistic regression. The capture-based targeted next generation sequencing (NGS) with a platform of 68 lung cancer-related genes was conducted in 139 cases, and the mutational spectrum was summarized. STAS was identified in 391 female and 481 male patients, of which ADC accounted for the majority of cases (92.6%). The concomitant solid or micropapillary subtype was observed in 92.12% patients with ADC. Poorly differentiated histological subtypes were more frequent and negatively correlated with tumor size in smaller tumor cases (P=0.036, Pearson's R=-0.075). Furthermore, in the subgroup of nodules within 3 cm, the distribution of the solid and micropapillary subtypes were significantly frequent in lymph node-positive patients (P<0.001). Tumor protein p53 (TP53) alterations were more frequent in smoking patients (27.6%, P=0.007), human epidermal growth factor receptor 2 (HER2) alterations were more common in female (10.8%, P=0.025), while Kirsten rat sarcoma viral oncogene (KRAS) (20.3%, P=0.024) and TP53 (45.9%, P=0.003) were more prevalent in males. Poorly differentiated histological subtypes likely played a crucial role in promoting the invasiveness of STAS, especially in small tumor-size cases. Epidermal growth factor receptor (EGFR), TP53, KARS, anaplastic lymphoma kinase (ALK), and ROS proto-oncogene 1 (ROS1) were the five most frequent alterations in STAS-positive ADC.
Publication Date: 2021-07-20
Journal: Annals of translational medicine

Integrated MicroRNA Expression Profile Reveals Dysregulated miR-20a-5p and miR-200a-3p in Liver Fibrosis.
MicroRNAs (miRNAs) have been demonstrated to involve in liver fibrogenesis. However, the miRNA-gene regulation in liver fibrosis is still unclear. Herein, the miRNA expression profile GSE40744 was obtained to analyze the dysregulated miRNAs between liver fibrosis and normal samples. Then, we predicted the target genes of screened miRNAs by miRTarBase, followed by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Then, the protein-protein interaction (PPI) network was constructed to identify the functional miRNA-gene regulatory modules. Furthermore, we verified the hub gene expression using the gene expression profile GSE14323. Finally, 89 DEMs were identified in fibrotic liver samples compared to normal liver samples. The top 3 upregulated DEMs (miR-200b-3p, miR-200a-3p, and miR-182-5p) and downregulated DEMs (miR-20a-5p, miR-194-3p, and miR-148a-3p) were further studied. 516 and 1416 target genes were predicted, respectively. KEGG analysis demonstrated that the predicted genes were enriched in the p53 signaling pathway and hepatitis B, etc. Through constructing a PPI network, the genes with the highest connectivity were identified as hub genes. Of note, most of the hub genes were potentially targeted by miR-20a-5p and miR-200a-3p. Based on the data from GSE14323, the expression of EGFR, STAT3, CTNNB1, and TP53 targeted by miR-200a-3p was significantly downregulated in fibrotic liver samples. Oppositely, the expression of PTEN, MYC, MAPK1, UBC, and CCND1 potentially targeted by miR-20a-5p was significantly upregulated. In conclusion, it is demonstrated that miR-20a-5p and miR-200a-3p were identified as the novel liver fibrosis-associated miRNAs, which may play critical roles in liver fibrogenesis.
Publication Date: 2021-07-09
Journal: BioMed research international

Coexistence of a secondary STRN-ALK, EML4-ALK double-fusion variant in a lung adenocarcinoma patient with EGFR mutation: a case report.
ALK-positive disease is characterized by the presence of ALK gene rearrangements that encode driver fusion oncoproteins. EML4-ALK fusion is regarded as the most common type in advanced nonsmall cell lung cancers. STRN-ALK is a novel ALK fusion partner in NSCLC and is considered sensitive to targeted therapy. However, there was no study regarding effective therapy for EML4-ALK and STRN-ALK double fusion variants in EGFR-resistant mutant lung cancer. TP53, RB1, and EGFR exon 21 L858R were found in tumor tissues and plasma from patients with capture-based NGS. After 3 months of gefitinib treatment, an NGS of plasma circulating tumor DNA showed that all variants disappeared significantly, and the tumor mass regressed on CT. However, after 10 months, the patient developed drug resistance and the disease progressed with the appearance of new metastatic lesions in the liver and bones. A repeated NGS test revealed EGFR exon20 T790M and the appearance of a novel double-fusion EML4-ALK and STRN-ALK. A combined therapeutic regimen of crizotinib plus osimertinib showed a promising prognosis confirmed with lung CT scans showing stable lesions without any new metastasis. Moreover, a subsequent genotype by NGS also showed the disappearance of STRN-ALK and EGFR exon20 T790M. The therapeutic efficacy of crizotinib plus osimertinib on EML4-ALK and STRN-ALK double-fusion variant in patients with EGFR-resistant mutant lung cancer may provide a supportive reference for the patients with such genetic alteration.
Publication Date: 2021-07-08
Journal: Anti-cancer drugs

TP53 mutations in circulating tumor DNA in advanced epidermal growth factor receptor-mutant lung adenocarcinoma patients treated with gefitinib.
Tumor protein p53 (TP53) is a tumor suppressor gene and TP53 mutations are associated with poor prognosis in non-small cell lung cancer. However, the in-depth classification of TP53 and its relationship with treatment response and prognosis in epidermal growth factor receptor (EGFR)-mutant tumors treated with EGFR tyrosine kinase inhibitors are unclear. Circulating tumor DNA was prospectively collected at baseline in advanced treatment-naïve EGFR-mutant lung adenocarcinoma patients treated with gefitinib in an open-label, single-arm, prospective, multicenter, phase 2 clinical trial (BENEFIT trial) and analyzed using next-generation sequencing. Survival was estimated using the Kaplan-Meier method. Of the 180 enrolled patients, 115 (63.9%) harbored TP53 mutations. The median progression-free survival (PFS) and overall survival (OS) of patients with TP53-wild type tumors were significantly longer than those of patients with TP53-mutant tumors. Mutations in exons 5-8 accounted for 80.9% of TP53 mutations. Mutations in TP53 exons 6 and 7 were significantly associated with inferior PFS and OS compared to wild-type TP53. TP53 mutation also influenced the prognosis of patients with different EGFR mutations. Patients with TP53 and EGFR exon 19 mutations had significantly longer PFS and OS than patients with TP53 and EGFR L858R mutations, and both groups had worse survival than patients with only EGFR mutations. Patients with TP53 mutations, especially in exons 6 and 7, had a lower response rate and shorter PFS and OS when treated with gefitinib. Moreover, TP53 exon 5 mutation divided TP53 mutations in disruptive and non-disruptive types.
Publication Date: 2021-07-01
Journal: Translational oncology

Identification of magnetic resonance imaging features for the prediction of molecular profiles of newly diagnosed glioblastoma.
We predicted molecular profiles in newly diagnosed glioblastoma patients using magnetic resonance (MR) imaging features and explored the associations between imaging features and major molecular alterations. This retrospective study included patients with newly diagnosed glioblastoma and available next-generation sequencing results. From preoperative MR imaging, Visually AcceSAble Rembrandt Images (VASARI) features, volumetric parameters, and apparent diffusion coefficient (ADC) values were obtained. First, univariate random forest was performed to identify gene abnormalities that could be predicted by imaging features with high accuracy and stability. Next, multivariate random forest was trained to predict the selected genes in the discovery cohort and was validated in the external cohort. Univariable logistic regression was performed to further explore the associations between imaging features and genes. Univariate random forest identified nine genes predicted by imaging features, with high accuracy and stability. The multivariate random forest model showed excellent performance in predicting IDH and PTPN11 mutations in the discovery cohort, which were validated in the external validation cohorts (areas under the receiver operator characteristic curve [AUCs] of 0.855 for IDH and 0.88 for PTPN11). ATRX loss and EGFR mutation were predicted with AUCs of 0.753 and 0.739, respectively, whereas PTEN could not be reliably predicted. Based on univariable logistic regression analyses, IDH, ATRX, and TP53 were clustered according to their shared imaging features, whereas EGFR and CDKN2A/B were clustered in the opposite direction. MR imaging features are related to specific molecular alterations and can be used to predict molecular profiles in patients with newly diagnosed glioblastoma.
Publication Date: 2021-07-01
Journal: Journal of neuro-oncology

The preventive effects of aspirin on preeclampsia based on network pharmacology and bioinformatics.
This study aimed to reveal the key targets and molecular mechanisms of aspirin in preventing preeclampsia. We used bioinformatics databases to collect the candidate targets for aspirin and preeclampsia. The biological functions and signaling pathways of the intersecting targets were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Then, the hub targets were identified by cytoscape plugin cytoHubba from the protein-protein interaction network. We collected 90 targets for aspirin in preventing preeclampsia. The biological processes of the intersecting targets are mainly involved in xenobiotic metabolic process, inflammatory response, negative regulation of apoptotic process, and protein phosphorylation. The highly enriched pathways were FoxO signaling pathway, circadian rhythm, insulin resistance, arachidonic acid metabolism, and drug metabolism-cytochrome P450. The hub targets for aspirin in preventing preeclampsia were tumor protein p53 (TP53), C-X-C motif chemokine ligand 8 (CXCL8), mitogen-activated protein kinase 3 (MAPK3), mitogen-activated protein kinase 1 (MAPK1), mitogen-activated protein kinase 14 (MAPK14), epidermal growth factor receptor (EGFR), estrogen receptor (ESR1), and prostaglandin-endoperoxide synthase 2 (PTGS2). Molecular docking results showed good bindings between the proteins and aspirin. In conclusion, these findings highlight the key targets and molecular mechanisms of aspirin in preventing preeclampsia.
Publication Date: 2021-06-26
Journal: Journal of human hypertension

Exploring polyps to colon carcinoma voyage: can blocking the crossroad halt the sequence?
Colorectal cancer is an important public health concern leading to significant cancer associate mortality. A vast majority of colon cancer arises from polyp which later follows adenoma, adenocarcinoma, and carcinoma sequence. This whole process takes several years to complete and recent genomic and proteomic technologies are identifying several targets involved in each step of polyp to carcinoma transformation in a large number of studies. Current text presents interaction network of targets involved in polyp to carcinoma transformation. In addition, important targets involved in each step according to network biological parameters are also presented. The functional overrepresentation analysis of each step targets and common top biological processes and pathways involved in carcinoma indicate several insights about this whole mechanism. Interaction networks indicate TP53, AKT1, GAPDH, INS, EGFR, and ALB as the most important targets commonly involved in polyp to carcinoma sequence. Though several important pathways are known to be involved in CRC, the central common involvement of PI3K-AKT indicates its potential for devising CRC management strategies. The common and central targets and pathways involved in polyp to carcinoma progression can shed light on its mechanism and potential management strategies. The data-driven approach aims to add valuable inputs to the mechanism of the years-long polyp-carcinoma sequence.
Publication Date: 2021-06-12
Journal: Journal of cancer research and clinical oncology

Molecular characterization of pleomorphic liposarcomatous differentiation in malignant phyllodes tumor of the breast: A case report.
Phyllodes tumors of the breast are rare fibroepithelial tumors, and malignant phyllodes tumors occasionally exhibit heterogeneous differentiation. Here, we report a case of malignant phyllodes tumor with pleomorphic liposarcomatous differentiation, and examined the genomic features of both components using capture-based next-generation sequencing of 425 cancer-related genes. A 56-year-old woman presented with a palpable, asymptomatic nodule in the right breast measuring 4.0 cm × 3.0 cm. Based on the findings from microscopic examination, the lesions were identified as malignant phyllodes tumor and pleomorphic liposarcoma. The liposarcomatous differentiation component was positive for S-100, but had no MDM2 and CDK4 amplifications according to the results of fluorescence in situ hybridization. The malignant phyllodes tumor and liposarcomatous differentiation component had similar genetic mutations, such as TP53, TERT, EGFR, RARA, RB1, and MED12 mutations, all of which are common mutations in phyllodes tumors. These results indicate that the pathogenesis of the pleomorphic liposarcomatous differentiation was similar with that of phyllodes tumor, but was different from the pleomorphic liposarcoma in extramammary sites. Thus, the intratumoral heterogeneity may have independently evolved after tumorigenesis.
Publication Date: 2021-06-07
Journal: Pathology, research and practice

Revealing the therapeutic targets and molecular mechanisms of emodin-treated coronavirus disease 2019 via a systematic study of network pharmacology.
Emodin has shown pharmacological effects in the treatment of infection with severe acute respiratory syndrome coronavirus-2, which leads to coronavirus disease 2019 (COVID-19). Thus, we speculated that emodin may possess anti-COVID-19 activity. In this study, using bioinformatics databases, we screened and harvested the candidate genes or targets of emodin and COVID-19 prior to the determination of pharmacological targets and molecular mechanisms of emodin against COVID-19. We discovered core targets for the treatment of COVID-19, including mitogen-activated protein kinase 1 (MAPK1), tumor protein (TP53), tumor necrosis factor (TNF), caspase-3 (CASP3), epidermal growth factor receptor (EGFR), vascular endothelial growth factor A (VEGFA), interleukin 1B (IL1B), mitogen-activated protein kinase 14 (MAPK14), prostaglandin-endoperoxide synthase 2 (PTGS2), B-cell lymphoma-2-like protein 1 (BCL2L1), interleukin-8 (CXCL8), myeloid cell leukemia-1 (MCL1), and colony stimulating factor 2 (CSF2). The GO analysis of emodin against COVID-19 mainly included cytokine-mediated signaling pathway, response to lipopolysaccharide, response to molecule of bacterial origin, developmental process involved in reproduction, and reproductive structure development. The KEGG results exhibited that the molecular pathways mainly included IL-17 signaling pathway, AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, pertussis, proteoglycans in cancer, pathways in cancer, MAPK signaling pathway, NOD-like receptor signaling pathway, NF-kappa B signaling pathway, etc. Also, molecular docking results revealed the docking capability between emodin and COVID-19 and the potential pharmacological activity of emodin against COVID-19. Taken together, these findings uncovered the targets and pharmacological mechanisms of emodin for treating COVID-19 and suggested that the vital targets might be used as biomarkers against COVID-19.
Publication Date: 2021-06-06
Journal: Aging

Prognostic Genetic Biomarkers Based on Oncogenic Signaling Pathways for Outcome Prediction in Patients with Oral Cavity Squamous Cell Carcinoma.
Mutational profiling of patients' tumors has suggested that the development of oral cavity squamous cell carcinoma (OCSCC) is driven by multiple genes in multiple pathways. This study aimed to examine the association between genomic alterations and clinical outcomes in patients with advanced stages OCSCC to facilitate prognostic stratification. We re-analyzed our previous whole-exome sequencing data from 165 long-term follow-ups of stages III and IV patients with OCSCC. Their frequent mutations were mapped to 10 oncogenic signaling pathways. Clinicopathological risk factors, relapse, and survival were analyzed to identify the genetic factors associated with advanced OCSCC. Frequent genetic alterations included point mutations in TP53, FAT1, NOTCH1, CASP8, CDKN2A, HRAS, PIK3CA, KMT2B (also known as MLL4), and LINC00273; amplified segments in CCND1, EGFR, CTTN, and FGFR1; and lost segments in CDKN2A, ADAM3A, and CFHR1/CFHR4. Comprehensive analysis of genetic alterations revealed that subgroups based on mutational signatures had a significant negative impact on disease-free survival (
Publication Date: 2021-06-03
Journal: Cancers

Network pharmacology identifies IL6 as an important hub and target of tibolone for drug repurposing in traumatic brain injury.
Traumatic brain injury (TBI) is characterized by a complex network of signals mediating inflammatory, proliferative and apoptotic processes during its acute and chronic phases. Current therapies mitigate damage and are mainly for palliative care and there are currently no effective therapies for secondary damage. This suggests a need to discover a compound with a greater spectrum of action that can control various pathological aspects of TBI. Here we used a network pharmacology approach to explore the benefits of tibolone, an estrogen and androgen receptor agonist with broader actions in cells, as a possible repurposing drug for TBI therapy. Using different databases we retrieved the targets significantly associated to TBI and tibolone, obtaining 2700 and 652, respectively. The top 10 GO enriched terms were mostly related to cell proliferation, apoptosis and inflammation. Following protein-protein functional analysis, the top connected proteins were related to kinase activity (MAPK1/14/3, AKT1 PIK3R1), apoptosis (TP53, CASP3), growth factors (EGFR), estrogen signalling (ESR1) and inflammation (IL6, TNF), with IL6 as an important signalling hub belonging to the top GO categories. Thus, we identified IL6 as a cellular node which we then validated using molecular mechanics-generalized born surface area (MMGBSA) and docking to explore which tibolone metabolite might interact with this protein. Both 3α and 3β-OH tibolone seemed to bind better to IL6 at important sites responsible for its binding to IL6R. In conclusion, our study demonstrates key hubs involved in TBI pathology which indicates IL6 as a target molecule of tibolone as drug repurposing for TBI therapy.
Publication Date: 2021-06-01
Journal: Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie

NGS-based liquid biopsy profiling identifies mechanisms of resistance to ALK inhibitors: a step toward personalized NSCLC treatment.
Despite impressive and durable responses, nonsmall cell lung cancer (NSCLC) patients treated with anaplastic lymphoma kinase (ALK) inhibitors (ALK-Is) ultimately progress due to development of resistance. Here, we have evaluated the clinical utility of circulating tumor DNA (ctDNA) profiling by next-generation sequencing (NGS) upon disease progression. We collected 26 plasma and two cerebrospinal fluid samples from 24 advanced ALK-positive NSCLC patients at disease progression to an ALK-I. These samples were analyzed by NGS and digital PCR. A tool to retrieve variants at the ALK locus was developed (VALK tool). We identified at least one resistance mutation in the ALK locus in ten (38.5%) plasma samples; the G1269A and G1202R mutations were the most prevalent among patients progressing to first- and second-generation ALK-Is, respectively. Overall, 61 somatic mutations were detected in 14 genes: TP53, ALK, PIK3CA, SMAD4, MAP2K1 (MEK1), FGFR2, FGFR3, BRAF, EGFR, IDH2, MYC, MET, CCND3, and CCND1. Specifically, a deletion in exon 19 in EGFR, a non-V600 BRAF mutation (G466V), and the F129L mutation in MAP2K1 were identified in four patients who showed no objective survival benefit from ALK-Is. Potential ALK-I-resistance mutations were also found in PIK3CA and IDH2. Finally, a c-MYC gain, along with a loss of CCND1 and FGFR3, was detected in a patient progressing on a first-line treatment with crizotinib. We conclude that NGS analysis of liquid biopsies upon disease progression identified different putative ALK-I-resistance mutations in most cases and could be a valuable approach for therapy decision making.
Publication Date: 2021-06-01
Journal: Molecular oncology

Quantum Cascade Laser-Based Infrared Imaging as a Label-Free and Automated Approach to Determine Mutations in Lung Adenocarcinoma.
Therapeutic decisions in lung cancer critically depend on the determination of histologic types and oncogene mutations. Therefore, tumor samples are subjected to standard histologic and immunohistochemical analyses and examined for relevant mutations using comprehensive molecular diagnostics. In this study, an alternative diagnostic approach for automatic and label-free detection of mutations in lung adenocarcinoma tissue using quantum cascade laser-based infrared imaging is presented. For this purpose, a five-step supervised classification algorithm was developed, which was not only able to detect tissue types and tumor lesions, but also the tumor type and mutation status of adenocarcinomas. Tumor detection was verified on a data set of 214 patient samples with a specificity of 97% and a sensitivity of 95%. Furthermore, histology typing was verified on samples from 203 of the 214 patients with a specificity of 97% and a sensitivity of 94% for adenocarcinoma. The most frequently occurring mutations in adenocarcinoma (KRAS, EGFR, and TP53) were differentiated by this technique. Detection of mutations was verified in 60 patient samples from the data set with a sensitivity and specificity of 95% for each mutation. This demonstrates that quantum cascade laser infrared imaging can be used to analyze morphologic differences as well as molecular changes. Therefore, this single, one-step measurement provides comprehensive diagnostics of lung cancer histology types and most frequent mutations.
Publication Date: 2021-05-19
Journal: The American journal of pathology

TP53 mutation and MET amplification in circulating tumor DNA analysis predict disease progression in patients with advanced gastric cancer.
Gastric cancer (GC) is a heterogeneous disease that encompasses various molecular subtypes. The molecular mutation characteristics of circulating tumor DNA (ctDNA) in advanced gastric cancer (AGC), especially the clinical utility of TP53 mutation and MET amplification in ctDNA need to be further explored. The aim of this study was mainly to assess the clinical utility of TP53 mutation and MET amplification in ctDNA as biomarkers for monitoring disease progression of AGC. We used multigene NGS-panel technology to study the characteristics of ctDNA gene mutations and screen the key mutant genes in AGC patients. The Kaplan-Meier method was used to calculate the survival probability and log-rank test was used to compare the survival curves of TP53 mutation and MET amplification in ctDNA of AGC patients. The survival time was set from the blood test time to the follow-up time to observe the relationship between the monitoring index and tumor prognosis. We performed mutation detection on ctDNA in 23 patients with AGC and identified the top 20 mutant genes. The five most frequently mutated genes were TP53 (55%), EGFR (20%), ERBB2 (20%), MET (15%) and APC (10%). TP53 was the most common mutated gene (55%) and MET had a higher frequency of mutations (15%) in our study. Kaplan-Meier analysis showed that patients with TP53 mutant in ctDNA had shorter overall survival (OS) than these with TP53 wild ( TP53 and MET are the two common frequently mutant genes in ctDNA of AGC patients.TP53 mutation and MET amplification in ctDNA could predict disease progression of AGC patients.
Publication Date: 2021-05-08
Journal: PeerJ

0 01(5)

p 0 05(5)

pik3ca tp53(4)

braf kras(4)

tp53 n(4)



egfr alk(4)

survival pfs(4)

4 3(3)

95 ci(3)

p 0 01(3)

n 5(3)

p 0 002(3)

n 6(3)

n 11(3)

1 1(2)

p 0 007(2)

months p(2)

3 2(2)

vegfa casp3(2)

n 2(2)

pik3ca 20(2)

n 3(2)

p 0 013(2)

tp53 co-mutations(2)

5 4(2)

22 5(2)

24 5(2)

braf pik3ca(2)

akt1 tnf(2)

3 6(1)

6 58(1)

8 7(1)

tp53 c(1)

0 001 q(1)

tp53 gof mutations(1)

4 34 11 76(1)

17 62 27 42(1)

0 001 r(1)

5 2 7(1)

18 5(1)

9 10(1)

с 322 327del p g108 f109del(1)

14 1 51 4(1)

age gender(1)

3 25 12 0(1)