pubmed > NFKB > interleukin

Fish oil attenuated dystrophic muscle markers of inflammation via FFA1 and FFA4 in the mdx mouse model of DMD.
In the present study we investigated the involvement of free fatty acid (FFA) receptors in the anti-inflammatory role of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in dystrophic muscles, by administering FFA blockers in the mdx mouse model of dystrophy. Mdx mice (3 months-old) were treated with fish oil capsules (FDC Vitamins; 0.4 g EPA and 0.2 g DHA; gavage) alone or concomitant to FFA1 and FFA4 blockers (GW1100 and AH7614; i.p.). C57BL/10 mice (3 months-old) and untreated-mdx mice received mineral oil and were used as controls. After 1 month of treatment, plasma markers of myonecrosis (total and cardiac creatine kinase; CK), the levels of FFA1 and FFA4 and of the markers of inflammation, nuclear transcription factor kappa B (NFkB), tumor necrosis factor alpha (TNF-α) and interleukin 1β (IL-1β) were analyzed in the diaphragm muscle and heart by western blot. Fish oil significantly reduced total CK, cardiac CK and the levels of NFkB (diaphragm), and of TNF-α and IL-1β (diaphragm and heart) in mdx. In the dystrophic diaphragm, FFA1 was increased compared to normal. Blockers of FFA1 and FFA4 significantly inhibited the effects of fish oil treatment in both dystrophic muscles. The anti-inflammatory effects of fish oil in dystrophic diaphragm muscle and heart were mediated through FFA1 and FFA4. No presente estudo investigamos o envolvimento de receptores de ácidos graxos livres (FFA) no efeito anti-inflamatório dos ácidos eicosapentaenoico (EPA) e docosahexaenoico (DHA) em músculos distróficos, administrando bloqueadores de FFA no camundongo mdx, modelo de distrofia. Camundongos mdx (3 meses de idade) foram tratados com cápsulas de óleo de peixe (FDC Vitamins; 0.4 g EPA e 0.2 g DHA; gavagem) ou com cápsulas de óleo de peixe concomitante a bloqueadores de FFA1 e FFA4 (GW1100 e AH7614; i.p.). Camundongos C57BL/10 (3 meses de idade) e camundongos mdx não tratados receberam óleo mineral e serviram de controle. Após 1 mês de tratamento, marcadores plasmáticos de mionecrose (creatina quinase total e cardíaca; CK), os níveis de FFA1 e FFA4 e dos marcadores de inflamação fator de transcrição nuclear kappa B (NFkB, nuclear transcription factor kappa B), fator de necrose tumoral alpha (TNF-α, tumor necrosis factor alpha) e interleucina 1β (IL-1β) foram analisados no músculo diafragma e no coração através de western blot. O óleo de peixe reduziu de forma significativa a CK total, CK cardíaca e os níveis de NFkB (diafragma), TNF-α e IL-1β (diafragma e coração) no mdx. No diafragma distrófico, FFA1 estava aumentado comparado ao normal. Os bloqueadores de FFA1 e FFA4 inibiram de forma significativa os efeitos do tratamento com óleo de peixe em ambos músculos distróficos. Os efeitos anti-inflamatórios do óleo de peixe nos músculos distróficos diafragma e cardíaco foram mediados por FFA1 e FFA4.
Publication Date: 2020-11-03
Journal: Anatomical record (Hoboken, N.J. : 2007)

Effects of Granulocyte Macrophage Colony-Stimulating Factor Inhibition on the Skin/Nerve Cell Model In Vitro.
The present study is based on the concept of neuro-aging and how it may affect surrounding skin cells. It has been shown that many factors play a significant role in skin homeostasis by interfering with various cytokines, either through activation or inhibition. Granulocyte macrophage colony-stimulating factor (GM-CSF) is generally recognized as an inflammatory cytokine, and our previous study has shown its effects on neuronal senescence after ultraviolet (UV) irradiation of skin cells. Following our previous work, this study was performed to investigate the neuroprotective effects of a GM-CSF antagonist, and how it may play an essential role in mediating anti-senescence and anti-inflammatory effects in the keratinocyte/nerve aging model. When human blastoma cells (SH-SY5Y) were treated with 10 ng/ml of GM-CSF, the levels of regulatory RNAs associated with aging, such as matrix metalloproteinase-9 (MMP9), nuclear factor NF-kappa-B p50 subunit (NFKB), inducible nitric oxide synthase (iNOS), and interleukin 1 beta (IL-1β) increased, whereas GM-CSF inhibition caused their expression to decrease. A decrease in the antioxidant, glutathione (GSH) was observed after SH-SY5Y cells were treated with GM-CSF. This study confirms that this GM-CSF antagonist may play an important role in neural senescence, where inhibition may be a new target in the skin/nerve aging model.
Publication Date: 2020-06-06
Journal: The Journal of craniofacial surgery

Magnesium acetyltaurate protects against endothelin-1 induced RGC loss by reducing neuroinflammation in Sprague dawley rats.
Endothelin-1 (ET-1), a potent vasoconstrictor, plays a significant role in the pathophysiology of ocular conditions like glaucoma. Glaucoma is characterized by apoptotic loss of retinal ganglion cells (RGCs) and loss of visual fields and is a leading cause of irreversible blindness. In glaucomatous eyes, retinal ischemia causes release of pro-inflammatory mediators such as interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α and promotes activation of transcription factors such as nuclear factor kappa B (NFKB) and c-Jun. Magnesium acetyltaurate (MgAT) has previously been shown to protect against ET-1 induced retinal and optic nerve damage. Current study investigated the mechanisms underlying these effects of MgAT, which so far remain unknown. Sprague dawley rats were intravitreally injected with ET-1 with or without pretreatment with MgAT. Seven days post-injection, retinal expression of IL-1β, IL-6, TNF-α, NFKB and c-Jun protein and genes was determined using multiplex assay, Western blot and PCR. Animals were subjected to retrograde labeling of RGCs to determine the extent of RGC survival. RGC survival was also examined using Brn3A staining. Furthermore, visual functions of rats were determined using Morris water maze. It was observed that pre-treatment with MgAT protects against ET-1 induced increase in the retinal expression of IL-1β, IL-6 and TNF-α proteins and genes. It also protected against ET-1 induced activation of NFKB and c-Jun. These effects of MgAT were associated with greater RGC survival and preservation of visual functions in rats. In conclusion, MgAT prevents ET-1 induced RGC loss and loss of visual functions by suppressing neuroinflammatory reaction in rat retinas.
Publication Date: 2020-03-12
Journal: Experimental eye research

A Novel Role of Ascorbic Acid in Anti-Inflammatory Pathway and ROS Generation in HEMA Treated Dental Pulp Stem Cells.
Resin (co)monomers issued from restorative dental materials are able to distribute in the dental pulp or the gingiva, to get to the saliva and to the flowing blood. Many authors have recently shown that methacrylate-based resins, in particular 2-hydroxyethylmethacrylate (HEMA), are responsible of inflammatory and autophagic processes in human dental pulp stem cells (hDPSCs) while ascorbic acid (AS), an antioxidant molecule, can assume a protective role in cell homeostasis. The purpose of the current work was to study if 50 µg/mL AS can affect the inflammatory status induced by 2 mM HEMA in hDPSCs, a tissue-specific cell population. Cell proliferation, cytokine release, morphological arrangement and reactive oxygen species (ROS) formation were determined respectively by MTT, ELISA, morphological analysis and dichlorofluorescein assay. The hDPSCs exposed to HEMA let to an increment of ROS formation and in the expression of high levels of inflammatory mediators such as nuclear factor-κB (NFkB), inflammatory cytokines such as interleukin IL6, IL8, interferon (IFN)ɣ and monocyte chemoattractant protein (MCP)1. Moreover, HEMA induced the up-regulation of pospho-extracellular signal-regulated kinases (pERK)/ERK signaling pathway associated to the nuclear translocation. AS treatment significantly down-regulated the levels of pro-inflammatory mediators. Then, the natural product AS reduced the detrimental result promoted by methacrylates in clinical dentistry, in fact restore cell proliferation, reduce the pro-inflammatory cytokine, downregulate ROS production and of NFkB/pERK/ERK signaling path. In synthesis, AS, could improve the quality of dental care and play a strategic role as innovative endodontic compound easy to use and with reasonable cost.
Publication Date: 2020-01-02
Journal: Materials (Basel, Switzerland)

Effects of restraint stress on the regulation of hippocampal glutamate receptor and inflammation genes in female C57BL/6 and BALB/c mice.
The two strains of inbred mice, BALB/c and C57BL/6, are widely used in pre-clinical psychiatry research due to their differences in stress susceptibility. Gene profiling studies in these strains have implicated the inflammation pathway as the main contributor to these differences. We focused our attention on female mice and tested their response to 5- or 10-day exposure to restraint stress. We examined the stress induced changes in the regulation of 11 inflammatory cytokine genes and 12 glutamate receptor genes in the hippocampus of female BALB/c and C57BL/6 mice using quantitative PCR. Elevated proinflammatory cytokine genes include Tumor Necrosis Factor alpha (TNFa), nuclear factor kappa-light-chain-enhancer of activated B cells (NFKB), Interleukin 1 alpha (IL1a), Interleukin 1 receptor (IL1R), Interleukin 10 receptor alpha subunit (IL10Ra), Interleukin 10 receptor beta subunit (IL10Rb), and tumor necrosis factor (TNF) super family members. Our results show that BALB/c and C57BL/6 mice differ in the genes induced in response to stress exposure and the level of gene regulation change. Our results show that the gene regulation in female BALB/c and C57BL/6 mice differs between strains in the genes regulated and the magnitude of the changes.
Publication Date: 2019-06-14
Journal: Neurobiology of stress

Immunohistochemical evaluation after Sr-enriched biphasic ceramic implantation in rabbits femoral neck: comparison of seven different bone conditions.
Strontium (Sr) has shown effectiveness for stimulating bone remodeling. Nevertheless, the exact therapeutic values are not established yet. Authors hypothesized that local application of Sr-enriched ceramics would enhance bone remodeling in constant osteoporosis of rabbits' femoral neck bone. Seven different bone conditions were analyzed: ten healthy rabbits composed a control group, while other twenty underwent ovariectomy and were divided into three groups. Bone defect was filled with hydroxyapatite 30% (HAP) and tricalcium phosphate 70% (TCP) granules in 7 rabbits, 5% of Sr-enriched HAP/TCP granules in 7, but sham defect was left unfilled in 6 rabbits. Bone samples were obtained from operated and non-operated legs 12 weeks after surgery and analyzed by histomorphometry and immunohistochemistry (IMH). Mean trabecular bone area in control group was 0.393 mm2, in HAP/TCP - 0.226 mm2, in HAP/TCP/Sr - 0.234 mm2 and after sham surgery - 0.242 mm2. IMH revealed that HAP/TCP/Sr induced most noticeable increase of nuclear factor kappa beta 105 (NFkB 105), osteoprotegerin (OPG), osteocalcin (OC), bone morphogenetic protein 2/4 (BMP 2/4), collagen type 1α (COL-1α), interleukin 1 (IL-1) with comparison to intact leg; NFkB 105 and OPG rather than pure HAP/TCP or sham bone. We concluded that Sr-enriched biomaterials induce higher potential to improve bone regeneration than pure bioceramics in constant osteoporosis of femoral neck bone. Further studies on bigger osteoporotic animals using Sr-substituted orthopedic implants for femoral neck fixation should be performed to confirm valuable role in local treatment of osteoporotic femoral neck fractures in humans.
Publication Date: 2018-07-22
Journal: Journal of materials science. Materials in medicine

Inhibition of TRAF6 ubiquitin-ligase activity by PRDX1 leads to inhibition of NFKB activation and autophagy activation.
TRAF6 (TNF receptor associated factor 6) plays a pivotal role in NFKB activation and macroautphagy/autophagy activation induced by TLR4 (toll like receptor 4) signaling. The objective of this study was to determine the functional role of PRDX1 (peroxiredoxin 1) in NFKB activation and autophagy activation. PRDX1 interacted with the ring finger domain of TRAF6 and inhibited its ubiquitin-ligase activity. The inhibition on TRAF6 ubiquitin-ligase activity by PRDX1 induced the suppression of ubiquitination of an evolutionarily conserved signaling intermediate in Toll pathways (ECSIT) essential for NFKB activation and BECN1 (beclin 1) required for autophagy activation. An inhibitory effect of PRDX1 on TRAF6 was clearly evidenced in PRDX1-knockdown (PRDX1KD) THP-1, PRDX1KD MDA-MB-231, and PRDX1KD SK-HEP-1 cells. PRDX1KD THP-1 cells showed increases of NFKB activation, pro-inflammatory cytokine production, NFKB-dependent gene expression induced by TLR4 stimulation, and resistance against Salmonella typhimurium infection. Additionally, migration and invasion abilities of PRDX1KD MDA-MB-231 and PRDX1KD SK-HEP-1 cancer cells were significantly enhanced compared to those of control cancer cells. Taken together, these results suggest that PRDX1 negatively regulates TLR4 signaling for NFKB activation and autophagy functions such as bactericidal activity, cancer cell migration, and cancer cell invasion by inhibiting TRAF6 ubiquitin-ligase activity. 3-MA: 3-methyladenine; BECN1: beclin 1; CHUK/IKKA: conserved helix-loop-helix ubiquitous kinase; ECSIT: ECSIT signalling integrator; ELISA: enzyme-linked immunosorbent assay; NFKB: nuclear factor kappa-light-chain-enhancer of activated B cells; IB: immunoblotting; IKBKB/IKKB: inhibitor of nuclear factor kappa B kinase subunit beta; IL1B: interleukin 1 beta; IL6: interleukin 6; IP: immunoprecipitation; LPS: lipopolysaccharide; MAP1LC3/LC3: microtuble associated protein 1 light chain 3; MAP3K7/TAK1: mitogen-activated protein kinase kinase kinase 7; MAPK14/p38: mitogen-activated protein kinase 14; mROS: mitochondrial reactive oxygen species; PRDX1: peroxiredoxin 1; PRDX6: peroxiredoxin 6; RELA/p65: RELA proto-oncogene, NF-kB subunit; TRAF6 TNF: receptor associated factor 6.
Publication Date: 2018-06-23
Journal: Autophagy

Aged interleukin-10tm1Cgn chronically inflamed mice have substantially reduced fat mass, metabolic rate, and adipokines.
Interleukin 10tm1Cgn (IL 10tm) mice have been utilized as a model of chronic inflammation and declining health span because of their propensity to develop chronic activation in NFkB pathways, skeletal muscle and cardiac changes, and mitochondrial dysfunction. We hypothesized that older IL 10tm frail mice would have alterations similar to frail, older humans in measured parameters of glucose metabolism, oxygen consumption (VO2), respiratory quotient (RQ), spontaneous locomotor activity, body composition and plasma adipokine levels. To test this hypothesis, we investigated these metabolic parameters in cohorts of 3, 10, and 20 month old IL 10tm female mice and age and gender matched C57Bl/6 mice. Insulin sensitivity, glucose homeostasis, locomotor activity and RQ were not significantly altered between the two strains of mice. Interestingly, old IL 10tm mice had significantly decreased VO2 when normalized by lean mass, but not when normalized by fat mass or the lean/fat mass ratio. NMR based body composition analysis and dissection weights show that fat mass is decreased with age in IL 10tm mice compared to controls. Further, plasma adiponectin and leptin were also decreased in IL 10tm.These findings suggest that frailty observed in this mouse model of chronic inflammation may in part be driven by alterations in fat mass, hormone secretion and energy metabolism.
Publication Date: 2017-12-22
Journal: PloS one

Hyaluronan synthase 3 promotes plaque inflammation and atheroprogression.
Hyaluronan (HA) is a prominent component of the provisional extracellular matrix (ECM) present in the neointima of atherosclerotic plaques. Here the role of HA synthase 3 (HAS3) in atheroprogression was studied. It is demonstrated here that HAS isoenzymes 1, -2 and -3 are expressed in human atherosclerotic plaques of the carotid artery. In Apolipoprotein E (Apoe)-deficient mice Has3 expression is increased early during lesion formation when macrophages enter atherosclerotic plaques. Importantly, HAS3 expression in vascular smooth muscle cells (VSMC) was found to be regulated by interleukin 1 β (IL-1β) in an NFkB dependent manner and blocking antibodies to IL-1β abrogate Has3 expression in VSMC by activated macrophages. Has3/Apoe double deficient mice developed less atherosclerosis characterized by decreased Th1-cell responses, decreased IL-12 release, and decreased macrophage-driven inflammation. Inhibition of HAS3-dependent synthesis of HA dampens systemic Th1 cell polarization and reduces plaque inflammation. These data suggest that HAS3 might be a promising therapeutic target in atherosclerosis. Moreover, because HAS3 is regulated by IL-1β, our results suggest that therapeutic anti-IL-1β antibodies, recently tested in human clinical trials (CANTOS), may exert their beneficial effects on inflammation in post-myocardial infarction patients in part via effects on HAS3. TOC categorybasic study TOC subcategoryarteriosclerosis.
Publication Date: 2017-10-11
Journal: Matrix biology : journal of the International Society for Matrix Biology

Activation of MTOR in pulmonary epithelium promotes LPS-induced acute lung injury.
MTOR (mechanistic target of rapamycin [serine/threonine kinase]) plays a crucial role in many major cellular processes including metabolism, proliferation and macroautophagy/autophagy induction, and is also implicated in a growing number of proliferative and metabolic diseases. Both MTOR and autophagy have been suggested to be involved in lung disorders, however, little is known about the role of MTOR and autophagy in pulmonary epithelium in the context of acute lung injury (ALI). In the present study, we observed that lipopolysaccharide (LPS) stimulation induced MTOR phosphorylation and decreased the expression of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 β)-II, a hallmark of autophagy, in mouse lung epithelium and in human bronchial epithelial (HBE) cells. The activation of MTOR in HBE cells was mediated by TLR4 (toll-like receptor 4) signaling. Genetic knockdown of MTOR or overexpression of autophagy-related proteins significantly attenuated, whereas inhibition of autophagy further augmented, LPS-induced expression of IL6 (interleukin 6) and IL8, through NFKB signaling in HBE cells. Mice with specific knockdown of Mtor in bronchial or alveolar epithelial cells exhibited significantly attenuated airway inflammation, barrier disruption, and lung edema, and displayed prolonged survival in response to LPS exposure. Taken together, our results demonstrate that activation of MTOR in the epithelium promotes LPS-induced ALI, likely through downregulation of autophagy and the subsequent activation of NFKB. Thus, inhibition of MTOR in pulmonary epithelial cells may represent a novel therapeutic strategy for preventing ALI induced by certain bacteria.
Publication Date: 2016-09-23
Journal: Autophagy

Anti-aging effects of guanosine in glial cells.
Guanosine, a guanine-based purine, has been shown to exert beneficial roles in in vitro and in vivo injury models of neural cells. Guanosine is released from astrocytes and modulates important astroglial functions, including glutamatergic metabolism, antioxidant, and anti-inflammatory activities. Astrocytes are crucial for regulating the neurotransmitter system and synaptic information processes, ionic homeostasis, energy metabolism, antioxidant defenses, and the inflammatory response. Aging is a natural process that induces numerous changes in the astrocyte functionality. Thus, the search for molecules able to reduce the glial dysfunction associated with aging may represent an approach for avoiding the onset of age-related neurological diseases. Hence, the aim of this study was to evaluate the anti-aging effects of guanosine, using primary astrocyte cultures from newborn, adult, and aged Wistar rats. Concomitantly, we evaluated the role of heme oxygenase 1 (HO-1) in guanosine-mediated glioprotection. We observed age-dependent changes in glutamate uptake, glutamine synthetase (GS) activity, the glutathione (GSH) system, pro-inflammatory cytokine (tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β)) release, and the transcriptional activity of nuclear factor kB (NFkB), which were prevented by guanosine in an HO-1-dependent manner. Our findings suggest guanosine to be a promising therapeutic agent able to provide glioprotection during the aging process. Thus, this study contributes to the understanding of the cellular and molecular mechanisms of guanosine in the aging process.
Publication Date: 2016-09-03
Journal: Purinergic signalling

rPbPga1 from Paracoccidioides brasiliensis Activates Mast Cells and Macrophages via NFkB.
The fungus Paracoccidioides brasiliensis is the leading etiological agent of paracoccidioidomycosis (PCM), a systemic granulomatous disease that typically affects the lungs. Cell wall components of P. brasiliensis interact with host cells and influence the pathogenesis of PCM. In yeast, many glycosylphosphatidylinositol (GPI)-anchored proteins are important in the initial contact with the host, mediating host-yeast interactions that culminate with the disease. PbPga1 is a GPI anchored protein located on the surface of the yeast P. brasiliensis that is recognized by sera from PCM patients. Endogenous PbPga1 was localized to the surface of P. brasiliensis yeast cells in the lungs of infected mice using a polyclonal anti-rPbPga1 antibody. Furthermore, macrophages stained with anti-CD38 were associated with P. brasiliensis containing granulomas. Additionally, rPbPga1 activated the transcription factor NFkB in the macrophage cell line Raw 264.7 Luc cells, containing the luciferase gene downstream of the NFkB promoter. After 24 h of incubation with rPbPga1, alveolar macrophages from BALB/c mice were stimulated to release TNF-α, IL-4 and NO. Mast cells, identified by toluidine blue staining, were also associated with P. brasiliensis containing granulomas. Co-culture of P. Brasiliensis yeast cells with RBL-2H3 mast cells induced morphological changes on the surface of the mast cells. Furthermore, RBL-2H3 mast cells were degranulated by P. brasiliensis yeast cells, but not by rPbPga1, as determined by the release of beta-hexosaminidase. However, RBL-2H3 cells activated by rPbPga1 released the inflammatory interleukin IL-6 and also activated the transcription factor NFkB in GFP-reporter mast cells. The transcription factor NFAT was not activated when the mast cells were incubated with rPbPga1. The results indicate that PbPga1 may act as a modulator protein in PCM pathogenesis and serve as a useful target for additional studies on the pathogenesis of P. brasiliensis.
Publication Date: 2015-09-01
Journal: PLoS neglected tropical diseases

Melatonin attenuates the TLR4-mediated inflammatory response through MyD88- and TRIF-dependent signaling pathways in an in vivo model of ovarian cancer.
Toll-like receptors (TLRs) are effector molecules expressed on the surface of ovarian cancer (OC) cells, but the functions of the TLR2/TLR4 signaling pathways in these cells remain unclear. Melatonin (mel) acts as an anti-inflammatory factor and has been reported to modulate TLRs in some aggressive tumor cell types. Therefore, we investigated OC and the effect of long-term mel therapy on the signaling pathways mediated by TLR2 and TLR4 via myeloid differentiation factor 88 (MyD88) and toll-like receptor-associated activator of interferon (TRIF) in an ethanol-preferring rat model. To induce OC, the left ovary of animals either consuming 10% (v/v) ethanol or not was injected directly under the bursa with a single dose of 100 μg of 7,12-dimethylbenz(a)anthracene (DMBA) dissolved in 10 μL of sesame oil. The right ovaries were used as sham-surgery controls. After developing OC, half of the animals received i.p. injections of mel (200 μg/100 g b.w./day) for 60 days. Although mel therapy was unable to reduce TLR2 levels, it was able to suppress the OC-associated increase in the levels of the following proteins: TLR4, MyD88, nuclear factor kappa B (NFkB p65), inhibitor of NFkB alpha (IkBα), IkB kinase alpha (IKK-α), TNF receptor-associated factor 6 (TRAF6), TRIF, interferon regulatory factor 3 (IRF3), interferon β (IFN-β), tumor necrosis factor alpha (TNF-α), and interleukin (IL)-6. In addition, mel significantly attenuated the expression of IkBα, NFkB p65, TRIF and IRF-3, which are involved in TLR4-mediated signaling in OC during ethanol intake. Collectively, our results suggest that mel attenuates the TLR4-induced MyD88- and TRIF-dependent signaling pathways in ethanol-preferring rats with OC.
Publication Date: 2015-02-07
Journal: BMC cancer

Toll-like receptor 11-initiated innate immune response in male mouse germ cells.
Toxoplasma gondii and uropathogenic Escherichia coli (UPEC) may infect the testis and impair testicular function. Mechanisms underlying testicular innate immune response to these two pathogens remain to be clarified. The present study examined the function of TLR11, which can be recognized by T. gondii-derived profilin and UPEC, in initiating innate immune response in male mouse germ cells. TLR11 is predominantly expressed in spermatids. Profilin and UPEC induced the expressions of different inflammatory cytokine profiles in the germ cells. In particular, profilin induced the expressions of macrophage chemotactic protein 1 (MCP1), interleukin 12 (IL12), and interferon gamma (IFNG) through nuclear factor KB (NFKB) activation. UPEC induced the expressions of MCP1, IL12, and IFNG, as well as tumor necrosis factor alpha (TNFA), IL6, and IFNB, through the activation of NFKB, IFN regulatory factor 3, and mitogen-activated protein kinases. Evidence showed that profilin induced the innate response in male germ cells through TLR11 signaling, and UPEC triggered the response through TLR11 and other TLR-signaling pathways. We also provided evidence that local injection of profilin or UPEC induces the innate immune response in the germ cells. Data describe TLR11-mediated innate immune function of male germ cells in response to T. gondii profilin and UPEC stimulations. This system may play a role in testicular defense against T. gondii and UPEC infections in mice.
Publication Date: 2014-01-10
Journal: Biology of reproduction

Molecular insights into 4-nitrophenol-induced hepatotoxicity in zebrafish: transcriptomic, histological and targeted gene expression analyses.
4-Nitrophenol (4-NP) is a prioritized environmental pollutant and its toxicity has been investigated using zebrafish, advocated as an alternative toxicological model. However, molecular information of 4-NP induced hepatotoxicity is still limited. This study aimed to obtain molecular insights into 4-NP-induced hepatotoxicity using zebrafish as a model. Adult male zebrafish were exposed to 4-NP for 8, 24, 48 and 96h. Livers were sampled for microarray experiment, qRT-PCR and various histological analyses. Transcriptomic analysis revealed that genes associated with oxidative phosphorylation and electron transport chain were significantly up-regulated throughout early and late stages of 4-NP exposure due to oxidative phosphorylation uncoupling by 4-NP. This in turn induced oxidative stress damage and up-regulated pathways associated with tumor suppressors Rb and p53, cell cycle, DNA damage, proteasome degradation and apoptosis. Pathways associated with cell adhesion and morphology were deregulated. Carbohydrate and lipid metabolisms were down-regulated while methionine and aromatic amino acid metabolisms as well as NFKB pathway associated with chronic liver conditions were up-regulated. Up-regulation of NFKB, NFAT and interleukin pathways suggested hepatitis. Histological analyses with specific staining methods and qRT-PCR analysis of selected genes corroborated with the transcriptomic analysis suggesting 4-NP induced liver injury. Our findings allowed us to propose a plausible model and provide a broader understanding of the molecular events leading to 4-NP induced acute hepatotoxicity for future studies involving other nitrophenol derivatives. This is the first transcriptomic report on 4-NP induced hepatotoxicity.
Publication Date: 2013-06-25
Journal: Biochimica et biophysica acta

Polymorphisms of interleukin-1 Beta and interleukin-17Alpha genes are associated with restless legs syndrome.
Dopamine, iron, and inflammatory pathways are considered important to the development of restless legs syndrome (RLS). Recent genetic studies support involvement of dopamine and iron; however, cytokine gene variation in the inflammatory component remains unexplored. A recent study reported a high prevalence of RLS among HIV-infected adults. We estimate occurrence of RLS in an ethnically diverse sample of HIV-infected adults and examine differences in demographic factors, clinical characteristics, and biomarkers relating to dopamine, iron, and inflammation between adults with and without RLS symptoms. A prospective longitudinal study aimed at identifying biomarkers of RLS symptom experience among HIV-infected adults. 316 HIV-positive adults were evaluated using International RLS Study Group criteria. Genes were chosen for hypothesized relationships to dopamine (NOS1, NOS2), iron (HFE) or inflammation-mediated by cytokine genes (interferon [IFN], interleukin [IL], nuclear factor kappa-B [NFKB], and tumor necrosis factor alpha [TNFA]). Similar to general population estimates, 11% of the sample met all four RLS diagnostic criteria. Controlling for race, gender, and hemoglobin, carrying two copies of the minor allele for IL1B rs1143643, rs1143634, or rs1143633 or carrying the minor allele for IL17A rs8193036 was associated with increased likelihood of meeting RLS diagnostic criteria. This study provides preliminary evidence of a genetic association between IL1B and IL17A genes and RLS.
Publication Date: 2013-03-06
Journal: Biological research for nursing

Type 1 diabetes increases the expression of proinflammatory cytokines and adhesion molecules in the artery wall of candidate patients for kidney transplantation.
Diabetes may accelerate atheromatosis in uremic patients. Our aim was to assess the influence of type 1 diabetes on the atheromatosis-related inflammation in patients with chronic kidney disease (CKD). We analyzed the expression of proinflammatory cytokines and adhesion molecules in the inferior epigastric artery walls of type 1 diabetic patients with CKD (n = 22) and compared it with nondiabetic uremic patients (n = 92) at the time of kidney transplantation. We evaluated the expression of interleukin (IL)-6, monocyte chemotractant protein (MCP)-1, vascular cell adhesion molecule (VCAM)-1, intercellular adhesion molecule-1, and the activation of nuclear factor-κβ p65 (NFkB-p65). Common carotid intima-media thickness (c-IMT) was determined by conventional echography. IL-6, MCP-1, and VCAM-1 proteins were elevated in type 1 diabetic patients compared with nondiabetic subjects (P < 0.05). The nuclear localization of NFkB-p65 was higher in type 1 diabetic patients (P < 0.01) and correlated with the levels of MCP-1 in this group (r = 0.726, P < 0.001). Arterial fibrosis correlated with IL-6 and MCP-1 levels (r = 0.411, P < 0.001 and r = 0.378, P = 0.001). A significant correlation was observed between VCAM-1 levels and both the degree of arterial narrowing and c-IMT. Type 1 diabetes produces a proinflammatory state in the arteries of end-stage CKD patients, with increased levels of IL-6, MCP-1, and VCAM-1, as well as a greater degree of p65 activation, which are associated with more severe vascular lesions and higher c-IMT. Although causality is not demonstrated, these findings support the major role of inflammation in type 1 diabetic patients with CKD.
Publication Date: 2012-01-03
Journal: Diabetes care

Uterine progesterone receptor expression, conceptus development, and ovarian function in pigs treated with RU 486 during early pregnancy.
Establishment of pregnancy in the pig depends on down-regulation of progesterone receptor (PGR) in the uterine luminal and glandular epithelium during the first week after breeding. The present study evaluated the regulation of endometrial PGR by progesterone and the possible role of endometrial tumor necrosis factor (ligand) superfamily member 11 (TNFSF11) and nuclear factor-kappa B (NFKB) activation in PGR expression. Mature, cycling gilts were inseminated (Day 0) and assigned to either untreated control (n = 9) or one of two treatments that employed RU 486 to block progesterone action either before (treatment 1 [T1]) or after (treatment 2 [T2]) the initiation of PGR down-regulation. The T1 gilts were treated with RU 486 (400 mg/day) on Days 3-5 of pregnancy (n = 9), and T2 gilts were treated with RU 486 on Days 6 and 7 of pregnancy (n = 9). Uteri and ovaries were collected on Day 8 or 12 of gestation. The diameter of the conceptuses in T1 gilts was approximately half that in controls by Day 8, and normal conceptuses were not collected from any T1 gilts on Day 12. Endometrial PGR mRNA was more abundant in T1 and T2 gilts compared with control gilts. The PGR-B protein decreased from Day 8 to Day 12 in the luminal epithelium and, to some extent, in superficial glandular epithelium in control and T2 gilts. In T1 gilts, the PGR-B protein remained elevated (i.e., failed to undergo down-regulation) on Day 12. Blocking PGR action early in the cycle (i.e., on or before Day 5), therefore, prevented normal conceptus development, caused elevated PGR mRNA, and prevented the decrease in PGR protein that typically occurs in pigs. We could not confirm a role for NFKB activation in PGR down-regulation, because pigs with extreme differences in PGR and TNFSF11 expression (T1 and controls) had similar NFKB activation on Day 8. Activated NFKB within the luminal epithelium and glandular epithelium (both superficial and deep) was observed in T2 and control pigs on Day 12 when elongating conceptuses (presumably releasing interleukin 1 beta to activate NFKB) were recovered. Gilts treated with RU 486 had greater ovarian follicular growth and greater plasma estradiol concentrations. We conclude that the mechanisms controlling PGR down-regulation are progesterone-dependent and occur between Day 3 and Day 6 of pregnancy. NFKB activation did not appear to have a role in PGR down-regulation within the period that we studied. Blocking progesterone action after Day 6 did not reverse the process of PGR down-regulation, nor did it appear to affect the development of conceptuses collected on Day 12.
Publication Date: 2010-09-25
Journal: Biology of reproduction

Neuromedin B and its receptor induce labor onset and are associated with the RELA (NFKB P65)/IL6 pathway in pregnant mice.
Although the neuromedin B receptor (NMBR), a bombesin receptor family member, has been implicated in thermoregulation and in stimulation of both urogenital and gastrointestinal smooth muscle contraction, its underlying role in labor onset and its associated molecular mechanisms remain poorly understood. We examined the relationship between temporal and spatial NMBR expression in the myometrium of pregnant mice and potential mechanistic pathways leading to labor onset. Resultant data indicate that NMBR expression peaked at term and before parturition. Maternal exposure to the NMBR agonist neuromedin B (NMB) shortened the gestational age of pups, an effect that was also observed after oxytocin administration. Both RELA (NFKB P65) DNA-binding activity and interleukin 6 (Il6) mRNA expression were greatest during parturition and after maternal exposure to the highest NMB concentration administered (150 μg/kg). Furthermore, a significant correlation was observed among NMBR mRNA expression, RELA DNA-binding activity, and Il6 mRNA expression. These data demonstrate that NMB and its receptor can induce the onset of labor via a RELA/IL6-mediated pathway.
Publication Date: 2010-09-10
Journal: Biology of reproduction

Effects of eccentric treadmill exercise on inflammatory gene expression in human skeletal muscle.
The present study examined the skeletal muscle expression of several genes related to the inflammatory process before and after a bout of downhill running. Twenty-nine males between the ages of 18 and 35 years performed a 45-min downhill (-17.5%) treadmill protocol at 60% of maximal oxygen consumption. Venous bloods samples and muscle biopsy samples from the vastus lateralis were donated prior to and at 3-h and 24-h postexercise, along with ratings of perceived muscle soreness. Serum creatine kinase (CK) was determined, as was skeletal muscle gene expression of interleukin (IL)-6, IL-8, IL-12 (p35), tumor necrosis factor-alpha (TNF-alpha), IL-1beta, cyclooxygenase 2 (COX2), and nuclear factor kappa B (NFkB) (p105/p50). Gene expression was analyzed using RT-PCR and compared with a standard housekeeping gene (beta-actin). Data were analyzed for statistical differences using multivariate analysis of variance with univariate follow-up. In addition, Pearson correlations were conducted to determine if any significant relationship exists between any of these transcripts and both CK and muscle soreness. Significant (p < 0.05) up-regulations in IL-6, IL-8, and COX2 mRNA expression were observed compared with baseline, whereas no significant changes for IL-12, IL-1beta, TNF-alpha, or NFkB were noted. Significant increases in IL-6 mRNA were observed at 3 h (p < 0.001) and 24 h (p = 0.043), whereas significant increases in IL-8 (p = 0.001) and COX2 (p = 0.046) mRNA were observed at 3-h postexercise. In addition, muscle soreness was significantly correlated with IL-8 at 24 h (r = -0.370; p = 0.048), whereas CK was significantly related to NFkB at baseline (r = -0.460; p = 0.012). These data indicate that increases in the mRNA expression of IL-6, IL-8, and COX2 occur in the vastus lateralis as a result of damaging eccentric exercise in young, recreationally trained males. Further, it appears that IL-8 transcription may play some role in inhibiting postexercise muscle soreness, possibly through regulation of angiogenesis.
Publication Date: 2009-09-22
Journal: Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme