pubmed > NFKB > ligand rankl

Pharmacodynamics of Pre-Operative PD1 checkpoint blockade and receptor activator of NFkB ligand (RANKL) inhibition in non-small cell lung cancer (NSCLC): study protocol for a multicentre, open-label, phase 1B/2, translational trial (POPCORN).
Neoadjuvant immunotherapy targeting immune checkpoint programmed death-1 (PD-1) is under investigation in various tumour settings including non-small-cell lung cancer (NSCLC). Preclinical models demonstrate the superior power of the immunotherapy provided in a neoadjuvant (pre-operative) compared with an adjuvant (post-operative) setting to eradicate metastatic disease and induce long-lasting antigen-specific immunity. Novel effective immunotherapy combinations are widely sought in the oncology field, targeting non-redundant mechanisms of immune evasion. A promising combination partner with anti-PD1 in NSCLC is denosumab, a monoclonal antibody blocking receptor activator of NF-κB ligand (RANKL). In preclinical cancer models and in a large retrospective case series in NSCLC, anti-cancer activity has been reported for the combination of immune checkpoint inhibition (ICI) and denosumab. Furthermore, clinical trials of ICI and denosumab are underway in advanced melanoma and clear-cell renal cell carcinoma. However, the mechanism of action of combination anti-PD1 and anti-RANKL is poorly defined. This open-label multicentre trial will randomise by minimisation 30 patients with resectable stage IA (primary > 2 cm) to IIIA NSCLC to a neoadjuvant treatment regime of either two doses of nivolumab (3 mg/kg every 2 weeks) or two doses of nivolumab (same regimen) plus denosumab (120 mg every 2 weeks, following nivolumab). Each treatment arm is of equal size and will be approximately balanced with respect to histology (squamous vs. non-squamous) and clinical stage (I-II vs. IIIA). All patients will receive surgery for their tumour 2 weeks after the final dose of neoadjuvant therapy. The primary outcome will be translational research to define the tumour-immune correlates of combination therapy compared with monotherapy. Key secondary outcomes will include a comparison of rates of the following between each arm: toxicity, response (pathological and radiological), and microscopically complete resection. The POPCORN study provides a unique platform for translational research to determine the mechanism of action of a novel proposed combination immunotherapy for cancer. Prospectively registered on Australian New Zealand Clinical Trials Registry (ACTRN12618001121257) on 06/07/2018.
Publication Date: 2019-12-21
Journal: Trials

Short-term RANKL exposure initiates a neoplastic transcriptional program in the basal epithelium of the murine salivary gland.
Although salivary gland cancers comprise only ∼3-6% of head and neck cancers, treatment options for patients with advanced-stage disease are limited. Because of their rarity, salivary gland malignancies are understudied compared to other exocrine tissue cancers. The comparative lack of progress in this cancer field is particularly evident when it comes to our incomplete understanding of the key molecular signals that are causal for the development and/or progression of salivary gland cancers. Using a novel conditional transgenic mouse (K5:RANKL), we demonstrate that Receptor Activator of NFkB Ligand (RANKL) targeted to cytokeratin 5-positive basal epithelial cells of the salivary gland causes aggressive tumorigenesis within a short period of RANKL exposure. Genome-wide transcriptomic analysis reveals that RANKL markedly increases the expression levels of numerous gene families involved in cellular proliferation, migration, and intra- and extra-tumoral communication. Importantly, cross-species comparison of the K5:RANKL transcriptomic dataset with The Cancer Genome Atlas cancer signatures reveals the strongest molecular similarity with cancer subtypes of the human head and neck squamous cell carcinoma. These studies not only provide a much needed transcriptomic resource to mine for novel molecular targets for therapy and/or diagnosis but validates the K5:RANKL transgenic as a preclinical model to further investigate the in vivo oncogenic role of RANKL signaling in salivary gland tumorigenesis.
Publication Date: 2019-06-22
Journal: Cytokine

RANKL inhibition improves muscle strength and insulin sensitivity and restores bone mass.
Receptor activator of Nfkb ligand (RANKL) activates, while osteoprotegerin (OPG) inhibits, osteoclastogenesis. In turn a neutralizing Ab against RANKL, denosumab improves bone strength in osteoporosis. OPG also improves muscle strength in mouse models of Duchenne's muscular dystrophy (mdx) and denervation-induce atrophy, but its role and mechanisms of action on muscle weakness in other conditions remains to be investigated. We investigated the effects of RANKL inhibitors on muscle in osteoporotic women and mice that either overexpress RANKL (HuRANKL-Tg+), or lack Pparb and concomitantly develop sarcopenia (Pparb-/-). In women, denosumab over 3 years improved appendicular lean mass and handgrip strength compared to no treatment, whereas bisphosphonate did not. HuRANKL-Tg+ mice displayed lower limb force and maximal speed, while their leg muscle mass was diminished, with a lower number of type I and II fibers. Both OPG and denosumab increased limb force proportionally to the increase in muscle mass. They markedly improved muscle insulin sensitivity and glucose uptake, and decrease anti-myogenic and inflammatory gene expression in muscle, such as myostatin and protein tyrosine phosphatase receptor-γ. Similarly, in Pparb-/-, OPG increased muscle volume and force, while also normalizing their insulin signaling and higher expression of inflammatory genes in skeletal muscle. In conclusions, RANKL deteriorates, while its inhibitor improves, muscle strength and insulin sensitivity in osteoporotic mice and humans. Hence denosumab could represent a novel therapeutic approach for sarcopenia.
Publication Date: 2019-05-24
Journal: The Journal of clinical investigation

Gliclazide reduced oxidative stress, inflammation, and bone loss in an experimental periodontal disease model.
The aim of this study was to evaluate the effects of gliclazide on oxidative stress, inflammation, and bone loss in an experimental periodontal disease model. Male albino Wistar rats were divided into no ligature, ligature, and ligature with 1, 5, and 10 mg/kg gliclazide groups. Maxillae were fixed and scanned using micro-computed tomography to quantify linear and bone volume/tissue volume (BV/TV) and volumetric bone loss. Histopathological, immunohistochemical and immunofluorescence analyses were conducted to examine matrix metalloproteinase-2 (MMP-2), cyclooxygenase 2 (COX-2), cathepsin K, members of the receptor activator of the nuclear factor kappa-Β ligand (RANKL), receptor activator of nuclear factor kappa-Β (RANK), osteoprotegerin (OPG) pathway, macrophage migration inhibitory factor (MIF), superoxide dismutase-1 (SOD-1), glutathione peroxidase-1 (GPx-1), NFKB p 50 (Cytoplasm), NFKB p50 NLS (nuclear localization signal), PI3 kinase and AKT staining. Myeloperoxidase activity, malondialdehyde and glutathione levels, while interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) levels were evaluated by spectroscopic ultraviolet-visible analysis. A quantitative reverse transcription polymerase chain reaction was used to quantify the gene expression of the nuclear factor kappa B p50 subunit (NF-κB p50), phosphoinositide 3-kinase (PI3k), protein kinase B (AKT), and F4/80. Micro-computed tomography showed that the 1 mg/kg gliclazide treatment reduced linear bone loss compared to the ligature, 5 mg/kg gliclazide, and 10 mg/kg gliclazide treatments. All concentrations of gliclazide increased bone volume/tissue volume (BV/TV) compared to the ligature group. Treatment with 1 mg/kg gliclazide reduced myeloperoxidase activity, malondialdehyde, IL-1β, and TNF-α levels (p≤0.05), and resulted in weak staining for COX-2, cathepsin k, MMP-2, RANK, RANKL, SOD-1, GPx-1,MIF and PI3k. In addition, down-regulation of NF-κB p50, PI3k, AKT, and F4/80 were observed, and OPG staining was strong after the 1 mg/kg gliclazide treatment. This treatment decreased neutrophil and macrophage migration, decreased the inflammatory response, and decreased bone loss in rats with ligature-induced periodontitis.
Publication Date: 2019-02-28
Journal: Journal of applied oral science : revista FOB

Soluble RANKL contributes to osteoclast formation in adult mice but not ovariectomy-induced bone loss.
Receptor activator of NFkB ligand (RANKL) is a TNF-family cytokine required for osteoclast formation, as well as immune cell and mammary gland development. It is produced as a membrane-bound protein that can be shed to form a soluble protein. We created mice harboring a sheddase-resistant form of RANKL, in which soluble RANKL is undetectable in the circulation. Lack of soluble RANKL does not affect bone mass or structure in growing mice but reduces osteoclast number and increases cancellous bone mass in adult mice. Nonetheless, the bone loss caused by estrogen deficiency is unaffected by the lack of soluble RANKL. Lymphocyte number, lymph node development, and mammary gland development are also unaffected by the absence of soluble RANKL. These results demonstrate that the membrane-bound form of RANKL is sufficient for most functions of this protein but that the soluble form does contribute to physiological bone remodeling in adult mice.
Publication Date: 2018-07-27
Journal: Nature communications

RANK and RANK Ligand Expression in Parotid Gland Carcinomas.
Recently, it has been reported that deregulation of the receptor activator of NFkB ligand (RANKL)/RANK signaling axis results in salivary gland tumor development in a mouse transgenic model. The aim of this study was to ascertain RANKL and RANK protein expression in a series of primary parotid gland carcinomas and to correlate it with clinicopathologic parameters. Formalin-fixed paraffin-embedded tumor samples from 46 consecutive cases of parotid gland carcinoma were selected for this study. For comparison, we examined a group of 40 randomly chosen parotid gland adenomas, including 20 pleomorphic adenomas, 10 myoepitheliomas, and 10 Warthin tumors. Immunohistochemical analysis for RANK and RANKL was conducted on tissue microarrays. Overall, 33 carcinomas (71.7%) were scored as positive for RANK and 25 (54.3%) for RANKL. The expression of both RANK and RANKL was significantly higher in carcinomas than in adenomas as only 6 (15%) adenomas were positive for RANK, and RANKL was negative in all benign tumors (P<0.001 for both, Fisher exact test). Some histologic types, including salivary duct carcinoma, mucoepidermoid carcinoma, and carcinoma ex-pleomorphic adenoma presented a high frequency of RANK and RANKL expression. No significant correlation was observed between RANK/RANKL expression and clinical parameters. Our study indicates that the expression of RANK and RANKL in parotid gland neoplasms is associated with the acquisition of a malignant phenotype and this pathway may represent an attractive therapeutic target in patients with parotid gland carcinomas.
Publication Date: 2018-03-02
Journal: Applied immunohistochemistry & molecular morphology : AIMM

Blocking epithelial-to-mesenchymal transition in glioblastoma with a sextet of repurposed drugs: the EIS regimen.
This paper outlines a treatment protocol to run alongside of standard current treatment of glioblastoma- resection, temozolomide and radiation. The epithelial to mesenchymal transition (EMT) inhibiting sextet, EIS Regimen, uses the ancillary attributes of six older medicines to impede EMT during glioblastoma. EMT is an actively motile, therapy-resisting, low proliferation, transient state that is an integral feature of cancers' lethality generally and of glioblastoma specifically. It is believed to be during the EMT state that glioblastoma's centrifugal migration occurs. EMT is also a feature of untreated glioblastoma but is enhanced by chemotherapy, by radiation and by surgical trauma. EIS Regimen uses the antifungal drug itraconazole to block Hedgehog signaling, the antidiabetes drug metformin to block AMP kinase (AMPK), the analgesic drug naproxen to block Rac1, the anti-fibrosis drug pirfenidone to block transforming growth factor-beta (TGF-beta), the psychiatric drug quetiapine to block receptor activator NFkB ligand (RANKL) and the antibiotic rifampin to block Wnt- all by their previously established ancillary attributes. All these systems have been identified as triggers of EMT and worthy targets to inhibit. The EIS Regimen drugs have a good safety profile when used individually. They are not expected to have any new side effects when combined. Further studies of the EIS Regimen are needed.
Publication Date: 2017-10-06
Journal: Oncotarget

The potential of mangosteen (
Following the extraction of a tooth, bone resorption can cause significant problems for a subsequent denture implant and restorative dentistry. Thus, the tooth extraction socket needs to be maintained to reduce the chance of any alveolar ridge bone resorption. The objective of this study is to determine whether the administration of mangosteen peel extracts (MPEs), combined with demineralized freeze-dried bovine bone xenograft (DFBBX) materials for tooth extraction socket preservation, could potentially reduce inflammation by decreased the expression of nuclear factor κβ (NfKb) and receptor activator of nuclear factor-κβ ligand (RANKL), to inhibit alveolar bone resorption, and increased of bone morphogenetic protein-2 (BMP2) expressions to accelerate alveolar bone regeneration. This study consists of several stages. First, a dosage of MPE combined with graft materials was applied to a preserved tooth extraction socket of a The results of this research were that it was determined that MPEs combined with graft materials on a preserved tooth extraction socket can reduce NfKb, RANK, and osteoclasts also increase of BMP2 and osteoblast. The induction of MPEs and DFBBX is effective in reducing inflammation, lowering osteoclasts, decreasing alveolar bone resorption, and also increasing BMP2 expression and alveolar bone regeneration.
Publication Date: 2017-09-25
Journal: Journal of Indian Prosthodontic Society

Failure to Target RANKL Signaling Through p38-MAPK Results in Defective Osteoclastogenesis in the Microphthalmia Cloudy-Eyed Mutant.
The Microphthalmia-associated transcription factor (MITF) is a basic helix-loop-helix leucine zipper family factor that is essential for terminal osteoclast differentiation. Previous work demonstrates that phosphorylation of MITF by p38 MAPK downstream of Receptor Activator of NFkB Ligand (RANKL) signaling is necessary for MITF activation in osteoclasts. The spontaneous Mitf cloudy eyed (ce) allele results in production of a truncated MITF protein that lacks the leucine zipper and C-terminal end. Here we show that the Mitf(ce) allele leads to a dense bone phenotype in neonatal mice due to defective osteoclast differentiation. In response to RANKL stimulation, in vitro osteoclast differentiation was impaired in myeloid precursors derived from neonatal or adult Mitf(ce/ce) mice. The loss of the leucine zipper domain in Mitf(ce/ce) mice does not interfere with the recruitment of MITF/PU.1 complexes to target promoters. Further, we have mapped the p38 MAPK docking site within the region deleted in Mitf(ce). This interaction is necessary for the phosphorylation of MITF by p38 MAPK. Site-directed mutations in the docking site interfered with the interaction between MITF and its co-factors FUS and BRG1. MITF-ce fails to recruit FUS and BRG1 to target genes, resulting in decreased expression of target genes and impaired osteoclast function. These results highlight the crucial role of signaling dependent MITF/p38 MAPK interactions in osteoclast differentiation.
Publication Date: 2015-07-29
Journal: Journal of cellular physiology

Aberrant Activation of the RANK Signaling Receptor Induces Murine Salivary Gland Tumors.
Unlike cancers of related exocrine tissues such as the mammary and prostate gland, diagnosis and treatment of aggressive salivary gland malignancies have not markedly advanced in decades. Effective clinical management of malignant salivary gland cancers is undercut by our limited knowledge concerning the key molecular signals that underpin the etiopathogenesis of this rare and heterogeneous head and neck cancer. Without knowledge of the critical signals that drive salivary gland tumorigenesis, tumor vulnerabilities cannot be exploited that allow for targeted molecular therapies. This knowledge insufficiency is further exacerbated by a paucity of preclinical mouse models (as compared to other cancer fields) with which to both study salivary gland pathobiology and test novel intervention strategies. Using a mouse transgenic approach, we demonstrate that deregulation of the Receptor Activator of NFkB Ligand (RANKL)/RANK signaling axis results in rapid tumor development in all three major salivary glands. In line with its established role in other exocrine gland cancers (i.e., breast cancer), the RANKL/RANK signaling axis elicits an aggressive salivary gland tumor phenotype both at the histologic and molecular level. Despite the ability of this cytokine signaling axis to drive advanced stage disease within a short latency period, early blockade of RANKL/RANK signaling markedly attenuates the development of malignant salivary gland neoplasms. Together, our findings have uncovered a tumorigenic role for RANKL/RANK in the salivary gland and suggest that targeting this pathway may represent a novel therapeutic intervention approach in the prevention and/or treatment of this understudied head and neck cancer.
Publication Date: 2015-06-11
Journal: PloS one

Antitumor agent cabozantinib decreases RANKL expression in osteoblastic cells and inhibits osteoclastogenesis and PTHrP-stimulated bone resorption.
Cabozantinib, an inhibitor of vascular endothelial growth factor and hepatocyte growth factor signaling, decreases bone lesions in patients with prostate cancer. To determine direct effects of cabozantinib on bone, resorption in neonatal mouse bone organ culture and on gene expression, proliferation, and phenotypic markers in osteoblast and osteoclast cell lines were examined. Cabozantinib, 0.3 and 3 µM, prevented PTHrP-stimulated calcium release from neonatal mouse calvaria. Since the effect on resorption could reflect effects on osteoblasts to prevent osteoclast activation, or direct inhibition of osteoclasts, responses in osteoblastic and osteoclast precursor cell lines were examined. Twenty-four-hour treatment of osteoblastic MC3T3-E1 cells with 3 µM cabozantinib decreased expression of receptor activator of NFkB ligand (RANKL) and alkaline phosphatase. Forty-eight-hour treatment of MC3T3-E1 cells with 3 µM cabozantinib inhibited cell proliferation and decreased MTT activity. Effects on alkaline phosphatase activity were biphasic, with small stimulatory effects at concentrations below 3 µM. When RAW 264.7 osteoclast precursor cells differentiated with 20 ng/ml RANKL were co-treated for 24 h with 3 µM cabozantinib, expression of RANK, TRAP, cathepsin K, alpha v or beta 3 integrin, or NFATc1 were unaffected. Five-day treatment of RANKL-treated RAW 264.7 cells with 3 µM cabozantinib decreased TRAP and MTT activity. The results suggest that the osteoblast could be the initial target, with subsequent direct and indirect effects on osteoclastogenesis leading to decreased resorption. The multiple effects of cabozantinib on the cell microenvironment of bone are consistent with its effectiveness in reducing lesions from prostate cancer metastases.
Publication Date: 2014-07-22
Journal: Journal of cellular biochemistry

Role of the OPG/RANK/RANKL triad in calcifications of the atheromatous plaques: comparison between carotid and femoral beds.
Recent works demonstrated the difference of calcification genesis between carotid and femoral plaques, femoral plaques being more calcified. It has been clearly demonstrated that the molecular triad osteoprotegerin (OPG)/Receptor Activator of NFkB (RANK)/RANK Ligand (RANKL) exerts its activities in the osteoimmunology and vascular system. The aim of this study was to determine their expression and their potential role in calcifications of the atheromatous plaques located in two different peripheral arterial beds, carotid and femoral. The expression of OPG, RANK and RANKL was analyzed by immunochemistry in 40 carotid and femoral samples. Blood OPG and RANKL were quantified using specific ELISA assays. OPG staining was more frequently observed in carotid than in femoral plaques, especially in lipid core. Its expression correlated with macrophage infiltration more abundantly observed in carotid specimens. Surprisingly, serum OPG concentration was significantly lower in carotid population compared to femoral population while RANK and RANKL were equally expressed in both arterial beds. Carotid plaques that are less rich in calcium than femoral specimens, express more frequently OPG, this expression being correlated with the abundance of macrophages in the lesions. These data strengthen the key role played by OPG in the differential calcification in carotid and femoral plaques.
Publication Date: 2012-03-10
Journal: Cytokine

Osteocyte RANKL: new insights into the control of bone remodeling.
The idea that osteoblasts, or their progenitors, support osteoclast formation by expressing the cytokine receptor activator of NFkB ligand (RANKL) is a widely held tenet of skeletal biology. Two recent studies provide evidence that osteocytes, and not osteoblasts or their progenitors, are the major source of RANKL driving osteoclast formation in cancellous bone. The goal of this review is to highlight the results of these new studies and discuss their implications for our understanding of bone remodeling.
Publication Date: 2012-02-23
Journal: Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research

Interplay between progesterone and prolactin in mammary development and implications for breast cancer.
Progesterone and prolactin remodel mammary morphology during pregnancy by acting on the mammary epithelial cell hierarchy. The roles of each hormone in mammary development have been well studied, but evidence of signalling cross-talk between progesterone and prolactin is still emerging. Factors such as receptor activator of NFkB ligand (RANKL) may integrate signals from both hormones to orchestrate their joint actions on the epithelial cell hierarchy. Common targets of progesterone and prolactin signalling are also likely to integrate their pro-proliferative actions in breast cancer. Therefore, a thorough understanding of the interplay between progesterone and prolactin in mammary development may reveal therapeutic targets for breast cancer. This review summarises our understanding of Pg and PRL action in mammary gland development before focusing on molecular mechanisms of signalling cross-talk and the implications for breast cancer.
Publication Date: 2011-09-29
Journal: Molecular and cellular endocrinology

Receptor activator of NF-kB (RANK) expression in primary tumors associates with bone metastasis occurrence in breast cancer patients.
Receptor activator of NFkB (RANK), its ligand (RANKL) and the decoy receptor of RANKL (osteoprotegerin, OPG) play a pivotal role in bone remodeling by regulating osteoclasts formation and activity. RANKL stimulates migration of RANK-expressing tumor cells in vitro, conversely inhibited by OPG. We examined mRNA expression levels of RANKL/RANK/OPG in a publicly available microarray dataset of 295 primary breast cancer patients. We next analyzed RANK expression by immunohistochemistry in an independent series of 93 primary breast cancer specimens and investigated a possible association with clinicopathological parameters, bone recurrence and survival. Microarray analysis showed that lower RANK and high OPG mRNA levels correlate with longer overall survival (P = 0.0078 and 0.0335, respectively) and disease-free survival (P = 0.059 and 0.0402, respectively). Immunohistochemical analysis of RANK showed a positive correlation with the development of bone metastases (P = 0.023) and a shorter skeletal disease-free survival (SDFS, P = 0.037). Specifically, univariate analysis of survival showed that "RANK-negative" and "RANK-positive" patients had a SDFS of 105.7 months (95% CI: 73.9-124.4) and 58.9 months (95% CI: 34.7-68.5), respectively. RANK protein expression was also associated with accelerated bone metastasis formation in a multivariate analysis (P = 0.029). This is the first demonstration of the role of RANK expression in primary tumors as a predictive marker of bone metastasis occurrence and SDFS in a large population of breast cancer patients.
Publication Date: 2011-05-12
Journal: PloS one

Modeled microgravity and hindlimb unloading sensitize osteoclast precursors to RANKL-mediated osteoclastogenesis.
Mechanical forces are essential to maintain skeletal integrity, and microgravity exposure leads to bone loss. The underlying molecular mechanisms leading to the changes in osteoblasts and osteoclast differentiation and function remain to be fully elucidated. Because of the infrequency of spaceflights and payload constraints, establishing in vitro and in vivo systems that mimic microgravity conditions becomes necessary. We have established a simulated microgravity (modeled microgravity, MMG) system to study the changes induced in osteoclast precursors. We observed that MMG, on its own, was unable to induce osteoclastogenesis of osteoclast precursors; however, 24 h of MMG activates osteoclastogenesis-related signaling molecules ERK, p38, PLCγ2, and NFATc1. Receptor activator of NFkB ligand (RANKL) (with or without M-CSF) stimulation for 3-4 days in gravity of cells that had been exposed to MMG for 24 h enhanced the formation of very large tartrate-resistant acid phosphatase (TRAP)-positive multinucleated (>30 nuclei) osteoclasts accompanied by an upregulation of the osteoclast marker genes TRAP and cathepsin K. To validate the in vitro system, we studied the hindlimb unloading (HLU) system using BALB/c mice and observed a decrease in BMD of femurs and a loss of 3D microstructure of both cortical and trabecular bone as determined by micro-CT. There was a marked stimulation of osteoclastogenesis as determined by the total number of TRAP-positive multinucleated osteoclasts formed and also an increase in RANKL-stimulated osteoclastogenesis from precursors removed from the tibias of mice after 28 days of HLU. In contrast to earlier reported findings, we did not observe any histomorphometric changes in the bone formation parameters. Thus, the foregoing observations indicate that microgravity sensitizes osteoclast precursors for increased differentiation. The in vitro model system described here is potentially a valid system for testing drugs for preventing microgravity-induced bone loss by targeting the molecular events occurring in microgravity-induced enhanced osteoclastogenesis.
Publication Date: 2010-07-01
Journal: Journal of bone and mineral metabolism

Osteoclast function, bone turnover and inflammatory cytokines during infective exacerbations of cystic fibrosis.
Raised levels of pro-inflammatory, pro-resorptive cytokines during pulmonary infection may contribute to osteoporosis in cystic fibrosis (CF). We assessed osteoclast number and activity during infective exacerbations and examined their relationship to serum inflammatory cytokines and bone turnover markers. Serum samples from 24 adults with CF were obtained before, during and after treatment of infection. Osteoclastic cells were generated from peripheral blood mononuclear cells and their number and activity assessed. Serum osteocalcin, type 1 collagen cross-linked N-telopeptide (NTx), interleukin-6 (IL-6), tumour necrosis factor alpha (TNFalpha), receptor activator of NFkB ligand (RANKL) and osteoprotegerin (OPG) were measured. Osteoclast number and activity were increased at the start of exacerbation and decreased with antibiotic therapy. Significant correlations were demonstrated between osteoclast formation and serum TNFalpha, OPG, osteocalcin and NTx and between osteoclast activity and serum IL-6 and NTx. The systemic response to infection is associated with increased bone resorptive activity in patients with CF.
Publication Date: 2009-12-17
Journal: Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society

New hypotheses on the function of the avian shell gland derived from microarray analysis comparing tissue from juvenile and sexually mature hens.
Activation of the shell gland region of the avian oviduct is mediated by ovarian steroids. To understand more extensively how shell glands are maintained and function, we have compared gene expression in the shell glands from juvenile and laying hens using a chicken cDNA microarray. Average expression profiles of juvenile and sexually mature shell glands were compared resulting in the identification of 266 differentially regulated genes. Reverse transcription quantitative polymerase chain reaction confirmed expression differences. The differentially expressed genes included several with known involvement in shell gland function, including ion transport and shell matrix proteins. There were also many unpredicted differentially expressed genes, and for some we propose hypotheses for their functions. These include those encoding (a) osteoprotegerin, a decoy death receptor for receptor activator of nuclear factor NFkB ligand (RANKL) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), that in the shell gland, may prevent apoptosis and/or may have an endocrine effect by preventing RANKL's action on bone osteoclasts that mobilize stored calcium; (b) prostatic acid phosphatase (ACPP) and prostate stem cell antigen (PSCA) that could play a role in sperm physiology within the shell gland; (c) urea transporter (SLC14A2) that could provide a novel anti-microbial defence; (d) bactericidal/permeability-increasing protein-like 2 (BPIL2), and other potential anti-microbials that have not previously been documented in the chicken. These new hypotheses, if borne out experimentally, will lead to a greater understanding of shell gland function including the processes involved in eggshell formation and anti-microbial activity.
Publication Date: 2009-03-24
Journal: General and comparative endocrinology

RANKL inhibition is an effective adjuvant for docetaxel in a prostate cancer bone metastases model.
Docetaxel induces an anti-tumor response in men with advanced prostate cancer (PCa); however, the side effects associated with docetaxel treatment can be severe, resulting in discontinuation of therapy. Thus, identification of an effective adjuvant therapy to allow lower doses of docetaxel is needed. Advanced PCa is typically accompanied by skeletal metastasis. Receptor activator of NFkB ligand (RANKL) is a key pro-osteoclastic factor. Targeting RANKL decreases establishment and progression of PCa growth in bone in murine models. The efficacy of inhibiting RANKL, using a recombinant soluble RANK extracellular domain fused with the immunoglobulin Fc domain (RANK-Fc), was tested as an adjuvant therapy with docetaxel for PCa bone metastasis in a murine intra-tibial model. The combination of RANK-Fc and docetaxel reduced tumor burden in bone greater than either treatment alone. The combination of docetaxel with a RANKL-inhibiting agent merits further investigation for treatment of advance PCa.
Publication Date: 2008-03-08
Journal: The Prostate

The "lively" cytokines network in beta-Thalassemia Major-related osteoporosis.
Osteoporosis affects approximately 40-50% of adult patients with beta-Thalassemia Major (beta TM). Recent data have implicated an altered modulation of the osteoprotegerin (OPG)/receptor activator of NFkB ligand (RANKL) system in the pathogenesis of beta TM-osteoporosis. OPG/RANKL system acts downstream from IL-1 alpha, IL-6 and TNF-alpha and it may be the final actor mediating the effects of these cytokines on the regulation of both postmenopausal and metabolic bone resorption. However, to date, there are no data on circulating levels of these pro-resorptive cytokines in beta TM patients. We investigated the potential relationships among these cytokines, several markers of bone turnover and bone mineral density (BMD) in beta TM patients. IL-1 alpha, IL-6 and TNF-alpha, OPG and RANKL serum levels, hemato-urinary bone remodeling markers and bone mineral density (BMD) at L2L4 and femoral neck as well as erythropoietin (EPO), 17beta-estradiol, and free-testosterone levels were measured in 30 well treated beta TM patients and in 20 healthy subjects, matched for age, sex and BMI with the patients. beta TM patients showed an altered bone turnover, with increased deoxypyridinoline (D-PYR) levels (P<0.0001), decreased osteocalcin (BGP) concentrations (<0.0001) and significantly lower lumbar (P=0.001) and femoral (P<0.05) BMD values as compared to controls. Circulating levels of IL-1 alpha (P<0.0001), TNF-alpha (P<0.0001) and IL-6 (P<0.05) were all increased in beta TM patients as compared with controls. In beta TM patients, IL-1 alpha was significantly related with D-PYR (r=0.5; P<0.05), RANKL (r=0.7; P=0.03) and IL-6 (r=0.3; P=0.006); IL-6 was also significantly correlated with D-PYR (r=0.5; P<0.05) and EPO levels (r=0.3; P=0.03); TNF-alpha showed a negative correlation with L2L4 BMD (r=-0.4; P<0.05). Our data demonstrate, for the first time, an association between increased circulating levels of pro-resorptive cytokines and an altered bone turnover in beta TM-patients, suggesting their involvement in the pathogenesis of beta TM-osteoporosis.
Publication Date: 2007-04-07
Journal: Bone