pubmed > TP53 > pten > n 8

Molecular Guided Treatments in Gynecologic Oncology: Analysis of a Real-World Precision Cancer Medicine Platform.
Advanced gynecologic cancers have a poor prognosis and constitute a major challenge for adequate treatment strategies. By analyzing and targeting molecular alterations, molecular guided treatments may be a viable option for the treatment of advanced gynecologic cancers. In this single-center, real-world retrospective analysis of our platform for precision cancer medicine (PCM), we describe the molecular profiling of 72 patients diagnosed with different types of advanced gynecologic malignancies. Tumor samples of the patients were examined by next-generation sequencing panel and immunohistochemistry (IHC). In total, we identified 209 genetic aberrations in 72 patients. The ten most frequent alterations were TP53 (n = 42, 20%), KRAS (n = 14, 6.6%), PIK3CA (n = 11, 5.2%), PIK3R1 (n = 9, 4.3%), ATR (n = 8, 3.8%), PTEN (n = 8, 3.8%), BRCA1 (n = 6, 2.8%), NF1 (n = 4, 1.9%), NOTCH1 (n = 4, 1.9%), and POLE (n = 4, 1.9%), which account for more than half of all molecular alterations (52.6%). In 21 (29.1%) patients only one mutation could be detected, and 44 (61.1%) patients had more than one mutation. No molecular alterations were detected in seven (9.7%) patients. IHC detected expression of phosphorylated mammalian target of rapamycin and epidermal growth factor receptor in 58 (80.6%) and 53 (73.6%) patients, respectively. In over two thirds (n = 49, 68.1%), a targeted therapy was suggested, based on the identified genetic aberrations. The most frequently recommended specific treatment was the combination of everolimus with exemestane (n = 18, 25 %). Based on our observations, it seems that PCM might be a feasible approach for advanced gynecologic cancers with limited treatment options. Nowadays molecular profiling of advanced gynecologic malignancies is feasible in the clinical routine. A molecular portrait should be done for every patient with an advanced therapy-refractory gynecologic malignancy to offer molecular-based treatment concepts.
Publication Date: 2020-05-06
Journal: The oncologist

Blood-Based Next-Generation Sequencing Analysis of Appendiceal Cancers.
Appendiceal cancers (ACs) are rare. The genomic landscape of ACs has not been well studied. The aim of this study was to confirm the feasibility of next-generation sequencing (NGS) using circulating tumor DNA (ctDNA) in ACs and characterize common genomic alterations. Molecular alterations in 372 plasma samples from 303 patients with AC using clinical-grade NGS of ctDNA (Guardant360) across multiple institutions were evaluated. Test detects single nucleotide variants in 54-73 genes, copy number amplifications, fusions, and indels in selected genes. A total of 303 patients with AC were evaluated, of which 169 (56%) were female. Median age was 56.8 (25-83) years. ctDNA NGS testing was performed on 372 plasma samples; 48 patients had testing performed twice, 9 patients had testing performed three times, and 1 patient had testing performed four times. Genomic alterations were defined in 207 (n = 207/372, 55.6%) samples, and 288 alterations were identified excluding variants of uncertain significance and synonymous mutations. Alterations were identified in at least one sample from 184 patients; TP53-associated genes (n = 71, 38.6%), KRAS (n = 33, 17.9%), APC (n = 14, 7.6%), EGFR (n = 12, 6.5%), BRAF (n = 11, 5.9%), NF1 (n = 10, 5.4%), MYC (n = 9, 4.9%), GNAS (n = 8, 4.3%), MET (n = 6, 3.3%), PIK3CA (n = 5, 2.7%), and ATM (n = 5, 2.7%). Other low-frequency but clinically relevant genomic alterations were as follows: AR (n = 4, 2.2%), TERT (n = 4, 2.2%), ERBB2 (n = 4, 2.2%), SMAD4 (n = 3, 1.6%), CDK4 (n = 2, 1.1%), NRAS (n = 2, 1.1%), FGFR1 (n = 2, 1.1%), FGFR2 (n = 2, 1.1%), PTEN (n = 2, 1.1%), RB1 (n = 2, 1.1%), and CDK6, CDKN2A, BRCA1, BRCA2, JAK2, IDH2, MAPK, NTRK1, CDH1, ARID1A, and PDGFRA (n = 1, 0.5%). Evaluation of ctDNA is feasible among patients with AC. The frequency of genomic alterations is similar to that previously reported in tissue NGS. Liquid biopsies are not invasive and can provide personalized options for targeted therapies in patients with AC. The complexity of appendiceal cancer and its unique genomic characteristics suggest that customized combination therapy may be required for many patients. Theoretically, as more oncogenic pathways are discovered and more targeted therapies are approved, customized treatment based on the patient's unique molecular profile will lead to personalized care and improve patient outcomes. Liquid biopsies are noninvasive, cost-effective, and promising methods that provide patients with access to personalized treatment.
Publication Date: 2019-12-01
Journal: The oncologist