pubmed > TP53 > rb1 > 0 001

RB1 and TP53 co-mutations correlate strongly with genomic biomarkers of response to immunity checkpoint inhibitors in urothelial bladder cancer.
Muscle invasive urothelial bladder carcinoma (MIBC) present RB1 and TP53 somatic alterations in a variable percentage of tumors throughout all molecular subtypes. MIBCs with neuroendocrine features have a high response rate to immunity checkpoint inhibitors (ICIs). Whether the presence of somatic co-alterations in these 2 genes in MIBCs is relevant to their responsiveness to ICIs is not known. The potential correlation of different genomic biomarkers of response to ICIs like tumor mutational burden (TMB), single nucleotide variants (SNV) predicted neoantigens, DNA damage response (DDR) genes, DNA somatic signatures and TILs infiltrate was explored in patients with somatic co-alterations in RB1 and TP53 (RB1&TP53) as compared with patients with no alterations in any (double wild type, DWT) or with alterations in just one of the 2 genes. The Cancer Genome Atlas (TCGA) pancancer BLCA dataset of cystectomy specimens (n = 407) with mutation, copy number alterations and transcriptomic (RNA sequencing) data as well as the IMVigor 210 study (n = 348) of metastatic urothelial bladder cancers treated with atezolizumab (PD-L1 inhibitor) with clinical response data containing transcriptomic (RNA sequencing), along with a subset (n = 274) with mutation and copy number data were used for this purpose. A novel tumor microenvironment metascore (TMM) was developed based in a LASSO regularized Cox model with predictive and prognostic ability. Samples with co-altered RB1&TP53: a) were enriched in immunity effectors (CD8 cytotoxic lymphocytes, NK cells) and display higher scores of a T cell inflamed signature; b) have a higher TMB, higher number of SNV predicted neoantigens and higher TILs fractions; c) have a higher number of DDR mutated and deep deleted DDR genes; d) have DNA somatic signatures 2 and 13 related to APOBEC mutagenesis. Using the IMVigor 210 dataset, RB1&TP53 samples had the highest response rate to atezolizumab and a strong correlation with TMB and TMM. The consensus molecular subtype classification in the IMVigor 210 dataset showed a significant correlation with both the response to treatment (p = 0.001, Chisquare) and the presence of RB1 and TP53 genomic alterations (p < 0.001, Chisquare). RB1&TP53 co-alterations are strongly associated with genomic biomarkers of response to ICIs in MIBCs.
Publication Date: 2021-04-22
Journal: BMC cancer

Plasma tumor gene conversions after one cycle abiraterone acetate for metastatic castration-resistant prostate cancer: a biomarker analysis of a multicenter international trial.
Plasma tumor DNA fraction is prognostic in metastatic cancers. This could improve risk stratification before commencing a new treatment. We hypothesized that a second sample collected after one cycle of treatment could refine outcome prediction of patients identified as poor prognosis based on plasma DNA collected pre-treatment. Plasma DNA [128 pre-treatment, 134 cycle 2 day 1 (C2D1), and 49 progression] from 151 chemotherapy-naive metastatic castration-resistant prostate cancer (mCRPC) patients in a phase II study of abiraterone acetate (NCT01867710) were subjected to custom targeted next-generation sequencing covering exons of these genes: TP53, AR, RB1, PTEN, PIK3CA, BRCA1, BRCA2, ATM, CDK12, CHEK2, FANCA HDAC2 and PALB2. We also captured 1500 pan-genome regions enriched for single nucleotide polymorphisms to allow detection of tumor DNA using the rolling B-allele method. We tested associations with overall survival (OS) and progression-free survival (PFS). Plasma tumor DNA detection was associated with shorter OS [hazard ratio (HR): 2.89, 95% confidence intervals (CI): 1.77-4.73, P ≤ 0.0001] and PFS (HR: 2.05; 95% CI: 1.36-3.11, P < 0.001). Using a multivariable model including plasma tumor DNA, patients who had a TP53, RB1 or PTEN gene alteration pre-treatment and at C2D1 had a significantly shorter OS than patients with no alteration at either time point (TP53: HR 7.13, 95% CI 2.37-21.47, P < 0.001; RB1: HR 6.24, 95% CI 1.97-19.73, P = 0.002; PTEN: HR 11.9, 95% CI 3.6-39.34, P < 0.001). Patients who were positive pre-treatment and converted to undetectable had no evidence of a difference in survival compared with those who were undetectable pre-treatment (P = 0.48, P = 0.43, P = 0.5, respectively). Progression samples harbored AR gain in all patients who had gain pre-treatment (9/49) and de novo AR somatic point mutations were detected in 8/49 patients. Plasma gene testing after one cycle treatment refines prognostication and could provide an early indication of treatment benefit.
Publication Date: 2021-04-02
Journal: Annals of oncology : official journal of the European Society for Medical Oncology

Cancer-related genetic changes in multistep hepatocarcinogenesis and their correlation with imaging and histological findings.
The landscape of cancer-related genetic aberrations in hepatocellular carcinoma (HCC) has gradually become clear through recent next-generation sequencing studies. However, it remains unclear how genetic aberrations correlate with imaging and histological findings. Using 117 formalin-fixed paraffin-embedded specimens of primary liver tumors, we undertook targeted next-generation sequencing of 50 cancer-related genes and digital polymerase chain reaction of hTERT. After classifying tumors into several imaging groups by hierarchal clustering with the information from gadoxetic acid enhanced magnetic resonance imaging, contrast-enhanced computed tomography, contrast-enhanced ultrasound, and diffusion-weighted imaging magnetic resonance imaging, the correlation between genetic aberrations and imaging and histology were investigated. Most frequent mutations were hTERT (61.5%), followed by TP53 (42.7%), RB1 (24.8%), and CTNNB1 (18.8%). Liver tumors were classified into six imaging groups/grades, and the prevalence of hTERT mutations tended to increase with the advancement of imaging/histological grades (P = 0.026 and 0.13, respectively), whereas no such tendency was evident for TP53 mutation (P = 0.78 and 1.00, respectively). Focusing on the mutations in each tumor, although the variant frequency (VF) of hTERT did not change (P = 0.36 and 0.14, respectively) in association with imaging/histological grades, TP53 VF increased significantly (P = 0.004 and <0.001, respectively). In multivariate analysis, stage III or IV (hazard ratio, 3.64; P = 0.003), TP53 VF ≥ 50% (hazard ratio, 3.79; P = 0.020) was extracted as an independent risk for recurrence in primary HCC patients. Increased prevalence of hTERT mutation and increased TP53 mutation VF are characteristic features of HCC progression, diagnosed with imaging/histological studies.
Publication Date: 2020-06-09
Journal: Hepatology research : the official journal of the Japan Society of Hepatology

A novel genomic panel as an adjunctive diagnostic tool for the characterization and profiling of breast Fibroepithelial lesions.
Known collectively as breast fibroepithelial lesions (FELs), the common fibroadenomas (FAs) and the rarer phyllodes tumors (PTs) are a heterogenous group of biphasic neoplasms. Owing to limited tissue availability, inter-observer variability, overlapping histological features and heterogeneity of these lesions, diagnosing them accurately on core biopsies is challenging. As the choice management option depends on the histological diagnosis; a novel 16-gene panel assay was developed to improve the accuracy of preoperative diagnosis on core biopsy specimens. Using this 16-gene panel, targeted amplicon-based sequencing was performed on 275 formalin-fixed, paraffin-embedded (FFPE) breast FEL specimens, archived at the Singapore General Hospital, from 2008 to 2012. In total, 167 FAs, 24 benign, 14 borderline and 6 malignant PTs, were profiled. Compared to FAs, PTs had significantly higher mutation rates in the TERT promoter (p <  0.001), RARA (p <  0.001), FLNA, RB1 and TP53 (p = 0.002, 0.020 and 0.018, respectively). In addition to a higher mutational count (p <  0.001), TERT promoter (p <  0.001), frameshift, nonsense and splice site (p = 0.001, < 0.001 and 0.043, respectively) mutations were also frequently observed in PTs. A multivariate logistic regression model was built using these as variables and a predictive scoring system was developed. It classifies a FEL at low or high risk (score <  1 and ≥ 1, respectively) of being a PT. This scoring system has good discrimination (ROC area = 0.773, 95% CI: 0.70 to 0.85), calibration (p = 0.945) and is significant in predicting PTs (p <  0.001). This novel study demonstrates the ability to extract DNA of sufficient quality and quantity for targeted sequencing from FFPE breast core biopsy specimens, along with their successful characterization and profiling using our customized 16-gene panel. Prospective work includes validating the utility of this promising 16-gene panel assay as an adjunctive diagnostic tool in clinical practice.
Publication Date: 2019-10-28
Journal: BMC medical genomics