pubmed > TP53 > rb1 > 95

Plasma tumor gene conversions after one cycle abiraterone acetate for metastatic castration-resistant prostate cancer: a biomarker analysis of a multicenter international trial.
Plasma tumor DNA fraction is prognostic in metastatic cancers. This could improve risk stratification before commencing a new treatment. We hypothesized that a second sample collected after one cycle of treatment could refine outcome prediction of patients identified as poor prognosis based on plasma DNA collected pre-treatment. Plasma DNA [128 pre-treatment, 134 cycle 2 day 1 (C2D1), and 49 progression] from 151 chemotherapy-naive metastatic castration-resistant prostate cancer (mCRPC) patients in a phase II study of abiraterone acetate (NCT01867710) were subjected to custom targeted next-generation sequencing covering exons of these genes: TP53, AR, RB1, PTEN, PIK3CA, BRCA1, BRCA2, ATM, CDK12, CHEK2, FANCA HDAC2 and PALB2. We also captured 1500 pan-genome regions enriched for single nucleotide polymorphisms to allow detection of tumor DNA using the rolling B-allele method. We tested associations with overall survival (OS) and progression-free survival (PFS). Plasma tumor DNA detection was associated with shorter OS [hazard ratio (HR): 2.89, 95% confidence intervals (CI): 1.77-4.73, P ≤ 0.0001] and PFS (HR: 2.05; 95% CI: 1.36-3.11, P < 0.001). Using a multivariable model including plasma tumor DNA, patients who had a TP53, RB1 or PTEN gene alteration pre-treatment and at C2D1 had a significantly shorter OS than patients with no alteration at either time point (TP53: HR 7.13, 95% CI 2.37-21.47, P < 0.001; RB1: HR 6.24, 95% CI 1.97-19.73, P = 0.002; PTEN: HR 11.9, 95% CI 3.6-39.34, P < 0.001). Patients who were positive pre-treatment and converted to undetectable had no evidence of a difference in survival compared with those who were undetectable pre-treatment (P = 0.48, P = 0.43, P = 0.5, respectively). Progression samples harbored AR gain in all patients who had gain pre-treatment (9/49) and de novo AR somatic point mutations were detected in 8/49 patients. Plasma gene testing after one cycle treatment refines prognostication and could provide an early indication of treatment benefit.
Publication Date: 2021-04-02
Journal: Annals of oncology : official journal of the European Society for Medical Oncology

Relationships between highly recurrent tumor suppressor alterations in 489 leiomyosarcomas.
Leiomyosarcoma (LMS) is the most common soft tissue and uterine sarcoma, but no standard therapy is available for recurrent or metastatic LMS. TP53, p16/RB1, and PI3K/mTOR pathway dysregulations are recurrent events, and some LMS express estrogen receptor (ER) and/or progesterone receptor (PR). To characterize relationships between these pathway perturbations, the authors evaluated protein expression in soft tissue and uterine nonprimary leiomyosarcoma (np-LMS), including local recurrences and distant metastases. TP53, RB1, p16, and PTEN expression aberrations were determined by immunohistochemistry (IHC) in tissue microarrays (TMAs) from 227 np-LMS and a comparison group of 262 primary leiomyosarcomas (p-LMS). Thirty-five of the np-LMS had a matched p-LMS specimen in the TMAs. Correlative studies included differentiation scoring, ER and PR IHC, and CDKN2A/p16 fluorescence in situ hybridization. Dysregulation of TP53, p16/RB1, and PTEN was demonstrated in 90%, 95%, and 41% of np-LMS, respectively. PTEN inactivation was more common in soft tissue np-LMS than uterine np-LMS (55% vs 31%; P = .0005). Moderate-strong ER expression was more common in uterine np-LMS than soft tissue np-LMS (50% vs 7%; P < .0001). Co-inactivation of TP53 and RB1 was found in 81% of np-LMS and was common in both soft tissue and uterine np-LMS (90% and 74%, respectively). RB1, p16, and PTEN aberrations were nearly always conserved in p-LMS and np-LMS from the same patients. These studies show that nearly all np-LMS have TP53 and/or RB1 aberrations. Therefore, therapies targeting cell cycle and DNA damage checkpoint vulnerabilities should be prioritized for evaluations in LMS.
Publication Date: 2021-04-01
Journal: Cancer

Modeling of osteosarcoma with induced pluripotent stem cells.
Osteosarcoma is the most common type of bone cancer. Osteosarcoma is commonly associated with TP53 inactivation (around 95% of cases) and RB1 inactivation (around 28% of cases). With the discovery of reprogramming factors to induce pluripotency even in terminally differentiated cells, induced pluripotent stem cells (iPSCs) have emerged as a promising disease model. iPSC-based disease modeling uniquely recapitulates disease phenotypes and can support discoveries into disease etiology and is used extensively today to study a variety of diseases, including cancers. This paper focuses on iPSC-based modeling of Li-Fraumeni syndrome (LFS), an autosomal dominant disorder commonly associated with TP53 mutation and high osteosarcoma incidence. As iPSCs are increasingly utilized as a platform for cancer modeling, the experimental approaches that we discuss here may serve as a guide for future studies.
Publication Date: 2020-10-07
Journal: Stem cell research