pubmed > TP53 > rb1 > smarcb1

Universal newborn genetic screening for pediatric cancer predisposition syndromes: model-based insights.
Genetic testing for pediatric cancer predisposition syndromes (CPS) could augment newborn screening programs, but with uncertain benefits and costs. We developed a simulation model to evaluate universal screening for a CPS panel. Cohorts of US newborns were simulated under universal screening versus usual care. Using data from clinical studies, ClinVar, and gnomAD, the presence of pathogenic/likely pathogenic (P/LP) variants in RET, RB1, TP53, DICER1, SUFU, PTCH1, SMARCB1, WT1, APC, ALK, and PHOX2B were assigned at birth. Newborns with identified variants underwent guideline surveillance. Survival benefit was modeled via reductions in advanced disease, cancer deaths, and treatment-related late mortality, assuming 100% adherence. Among 3.7 million newborns, under usual care, 1,803 developed a CPS malignancy before age 20. With universal screening, 13.3% were identified at birth as at-risk due to P/LP variant detection and underwent surveillance, resulting in a 53.5% decrease in cancer deaths in P/LP heterozygotes and a 7.8% decrease among the entire cohort before age 20. Given a test cost of $55, universal screening cost $244,860 per life-year gained; with a $20 test, the cost fell to $99,430 per life-year gained. Population-based genetic testing of newborns may reduce mortality associated with pediatric cancers and could be cost-effective as sequencing costs decline.
Publication Date: 2021-03-27
Journal: Genetics in medicine : official journal of the American College of Medical Genetics

Broad spectrum mutational analysis of chromophobe renal cell carcinoma using next-generation sequencing.
Chromophobe renal cell carcinoma (ChRCC) is a rare subtype of non-clear cell renal cell carcinoma. Due to its rarity, its molecular characterization as well as therapeutic targets are still not fully understood. We performed a next-generation sequencing analysis using the platform Ion PGM System on 20 retrospectively collected ChRCC cases with the aim of identify molecular biomarkers with potential prognostic value or that could have therapeutic implications. We identified mutation onTP53, SMARCB1, RB1 and JAK3. The most frequently altered gene was TP53 (6/20, 30 % of cases). SMARCB1 mutation was found in 3 (15 %) patients and in all cases the mutational variant was p.T72 K, with known pathogenenic meaning. One (5%) patient presented a pathogenetic mutation of RB1. JAK3 was mutated in 1 (5%) patient and this mutation resulted to have uncertain pathogenetic significance. ChRCC is a rare disease still not fully molecularly characterized. Next-generation sequencing analysis could be useful to identify potential mutation with prognostic value or that could be potential therapeutic targets.
Publication Date: 2021-02-09
Journal: Pathology, research and practice

Next generation sequencing identifies novel potential actionable mutations for grade I meningioma treatment.
Meningiomas are common brain tumors that arise from the meningeal membranes that envelope the brain and spinal cord. The World Health Organization classifies these tumors into three histopathological grades. Because of tumor recurrence, treating meningiomas may be challenging even in well-differentiated grade I (GI) neoplasms. Indeed, around 5% of completely resected GI meningiomas relapse within 5 years. Therefore, identifying driver mutations in GI meningiomas through next generation sequencing (NGS) assays is paramount. The aim of this study was to validate the use of the 50-gene AmpliSeq Hotspot Cancer Panel v2 to identify the mutational status of 23 GI meningioma, namely, 12 non recurrent and 11 recurrent. In 18 out of the 23 GI meningiomas analyzed, we identified at least one gene mutation (78.2%). The most frequently mutated genes were c-kit (39.1%), ATM (26.1%), TP53 (26.1%), EGFR (26.1%), STK11 (21.7%), NRAS (17.4%), SMAD4 (13%), FGFR3 (13%), and PTPN11 (13%); less frequent mutations were SMARCB1 (8.7%), FLT3 (8.7%), KRAS (8.7%), FBWX7 (8.7%), ABL1 (8.7%), ERBB2 (8.7%), IDH1 (8.7%), BRAF (8.7%), MET (8.7%), HRAS (4.3%), RB1 (4.3%), CTNNB1 (4.3%), PIK3CA (4.3%), VHL (4.3%), KDR (4.3%), APC (4.3%), NOTCH1 (4.3%), JAK3 (4.3%), and SRC (4.3%). To our knowledge, mutations in all of these genes, except for TP53, STK11, SMARCB1, PIK3CA, VHL, and BRAF, have never been described before in meningiomas. Hence, these findings demonstrate the viability of NGS to detect new genetic alterations in GI meningiomas. Equally important, this technology enabled us to detect possible novel actionable mutations not previously associated with GI and for which selective inhibitors already exist.
Publication Date: 2019-12-25
Journal: Histology and histopathology

Mutational spectrum of tobacco associated oral squamous carcinoma and its therapeutic significance.
Oral squamous cell cancer (OSCC) is a common malignancy attributed to use of chewing smokeless tobacco and smoking. Most of the targeted strategies are based on EGFR expression and mutation; however, none of them has shown significant improvement in survival and response rates. We carried out this study to evaluate mutational profile of tobacco associated oral carcinoma with special emphasis on EGFR and its downstream events. A total of 46 histologically proven cases were recruited between January 2017 and January 2019. Apart from detailed clinical and histological studies, the paraffin-embedded tissue was submitted for expression of 50 genes using Next Generation Sequencing using Ion Ampliseq Cancer Hotspot Panel v2. The mean age of patients was 47.8 ± 10.9 years. Majority had tumors on buccal mucosa (24) and tongue (13). Nineteen of these tumors were larger than 4 cm, and 5 had adjacent site involvement. Thirty one were node positive. TP53 mutations were commonest seen in 19 followed by CDKN2A in 11, HRAS in 8, PIK3CA in 3, SMARCB1 in 2, and KIT, EGFR, BRAF, STK11, ABL1, RB1 in one case each. Concomitant TP53 mutation was identified with other mutations like CDKN2A, HRAS, KIT, PIK3CA, STK11, SMARCB1, ABL1, and RB1 making tobacco-associated OSCC as a heterogeneous mutational tumor with multiple events. A patient with TP53 mutations has poor disease free survival (47.4 vs 63% p = 0.17); however, this was not statistically significant. The study shows a heterogeneous mutational spectrum with multiple mutational events in OSCC. The low EGFR mutation rates and higher mutations in EGFR downstream pathways including that in TP53 and HRAS suggest that anti EGFR strategies may not succeed in these tumors and newer agents and therapeutic combinations need to be tried.
Publication Date: 2019-11-30
Journal: World journal of surgical oncology