pubmed > TP53 > rb1 > stk11 smarcb1

Next generation sequencing identifies novel potential actionable mutations for grade I meningioma treatment.
Meningiomas are common brain tumors that arise from the meningeal membranes that envelope the brain and spinal cord. The World Health Organization classifies these tumors into three histopathological grades. Because of tumor recurrence, treating meningiomas may be challenging even in well-differentiated grade I (GI) neoplasms. Indeed, around 5% of completely resected GI meningiomas relapse within 5 years. Therefore, identifying driver mutations in GI meningiomas through next generation sequencing (NGS) assays is paramount. The aim of this study was to validate the use of the 50-gene AmpliSeq Hotspot Cancer Panel v2 to identify the mutational status of 23 GI meningioma, namely, 12 non recurrent and 11 recurrent. In 18 out of the 23 GI meningiomas analyzed, we identified at least one gene mutation (78.2%). The most frequently mutated genes were c-kit (39.1%), ATM (26.1%), TP53 (26.1%), EGFR (26.1%), STK11 (21.7%), NRAS (17.4%), SMAD4 (13%), FGFR3 (13%), and PTPN11 (13%); less frequent mutations were SMARCB1 (8.7%), FLT3 (8.7%), KRAS (8.7%), FBWX7 (8.7%), ABL1 (8.7%), ERBB2 (8.7%), IDH1 (8.7%), BRAF (8.7%), MET (8.7%), HRAS (4.3%), RB1 (4.3%), CTNNB1 (4.3%), PIK3CA (4.3%), VHL (4.3%), KDR (4.3%), APC (4.3%), NOTCH1 (4.3%), JAK3 (4.3%), and SRC (4.3%). To our knowledge, mutations in all of these genes, except for TP53, STK11, SMARCB1, PIK3CA, VHL, and BRAF, have never been described before in meningiomas. Hence, these findings demonstrate the viability of NGS to detect new genetic alterations in GI meningiomas. Equally important, this technology enabled us to detect possible novel actionable mutations not previously associated with GI and for which selective inhibitors already exist.
Publication Date: 2019-12-25
Journal: Histology and histopathology

Mutational spectrum of tobacco associated oral squamous carcinoma and its therapeutic significance.
Oral squamous cell cancer (OSCC) is a common malignancy attributed to use of chewing smokeless tobacco and smoking. Most of the targeted strategies are based on EGFR expression and mutation; however, none of them has shown significant improvement in survival and response rates. We carried out this study to evaluate mutational profile of tobacco associated oral carcinoma with special emphasis on EGFR and its downstream events. A total of 46 histologically proven cases were recruited between January 2017 and January 2019. Apart from detailed clinical and histological studies, the paraffin-embedded tissue was submitted for expression of 50 genes using Next Generation Sequencing using Ion Ampliseq Cancer Hotspot Panel v2. The mean age of patients was 47.8 ± 10.9 years. Majority had tumors on buccal mucosa (24) and tongue (13). Nineteen of these tumors were larger than 4 cm, and 5 had adjacent site involvement. Thirty one were node positive. TP53 mutations were commonest seen in 19 followed by CDKN2A in 11, HRAS in 8, PIK3CA in 3, SMARCB1 in 2, and KIT, EGFR, BRAF, STK11, ABL1, RB1 in one case each. Concomitant TP53 mutation was identified with other mutations like CDKN2A, HRAS, KIT, PIK3CA, STK11, SMARCB1, ABL1, and RB1 making tobacco-associated OSCC as a heterogeneous mutational tumor with multiple events. A patient with TP53 mutations has poor disease free survival (47.4 vs 63% p = 0.17); however, this was not statistically significant. The study shows a heterogeneous mutational spectrum with multiple mutational events in OSCC. The low EGFR mutation rates and higher mutations in EGFR downstream pathways including that in TP53 and HRAS suggest that anti EGFR strategies may not succeed in these tumors and newer agents and therapeutic combinations need to be tried.
Publication Date: 2019-11-30
Journal: World journal of surgical oncology