pubmed > ESR1 > rs9340799 > catechol-o-methyltransferase comt

Human Genetic Variability Contributes to Postoperative Morphine Consumption.
High interindividual variability in postoperative opioid consumption is related to genetic and environmental factors. We tested the association between morphine consumption, postoperative pain, and single nucleotide polymorphisms (SNPs) within opioid receptor μ 1 (OPRM1), catechol-O-methyltransferase (COMT), uridine diphosphate glucose-glucuronosyltransferase-2B7, and estrogen receptor (ESR1) gene loci to elucidate genetic prediction of opioid consumption. We analyzed 20 SNPs in 201 unrelated Caucasian patients who underwent abdominal surgery and who were receiving postoperative patient-controlled analgesia-administered morphine. Morphine consumption and pain intensity were dependent variables; age and sex were covariates. A haplotype of 7 SNPs in OPRM1 showed significant additive effects on opioid consumption (P = .007); a linear regression model including age and 9 SNPs in ESR1, OPRM1, and COMT explained the highest proportion of variance of morphine consumption (10.7%; P = .001). The minimal model including 3 SNPs in ESR1, OPRM1, and COMT explained 5% of variance (P = .007). We found a significant interaction between rs4680 in COMT and rs4986936 in ESR1 (P = .007) on opioid consumption. SNPs rs677830 and rs540825 of OPRM1 and rs9340799 of ESR1 were nominally associated with pain Numeric Rating Scale scores. Combinations of genetic variants within OPRM1, COMT, and ESR1 better explain variability in morphine consumption than single genetic variants. Our results contribute to the development of genetic markers and statistical models for future diagnostic tools for opioid consumption/efficacy. This article presents the efforts dedicated to detect correlations between the genetic polymorphisms and the clinical morphine effect self-administered by patients using a patient-controlled analgesia pump after major surgery. The clinical effect is expressed in terms of morphine consumption and pain scores. REGISTERED ON CLINICALTRIALS.GOV: NCT01233752.
Publication Date: 2016-02-24
Journal: The journal of pain

Common variants in psychiatric risk genes predict brain structure at birth.
Studies in adolescents and adults have demonstrated that polymorphisms in putative psychiatric risk genes are associated with differences in brain structure, but cannot address when in development these relationships arise. To determine if common genetic variants in disrupted-in-schizophrenia-1 (DISC1; rs821616 and rs6675281), catechol-O-methyltransferase (COMT; rs4680), neuregulin 1 (NRG1; rs35753505 and rs6994992), apolipoprotein E (APOE; ε3ε4 vs. ε3ε3), estrogen receptor alpha (ESR1; rs9340799 and rs2234693), brain-derived neurotrophic factor (BDNF; rs6265), and glutamate decarboxylase 1 (GAD1; rs2270335) are associated with individual differences in brain tissue volumes in neonates, we applied both automated region-of-interest volumetry and tensor-based morphometry to a sample of 272 neonates who had received high-resolution magnetic resonance imaging scans. ESR1 (rs9340799) predicted intracranial volume. Local variation in gray matter (GM) volume was significantly associated with polymorphisms in DISC1 (rs821616), COMT, NRG1, APOE, ESR1 (rs9340799), and BDNF. No associations were identified for DISC1 (rs6675281), ESR1 (rs2234693), or GAD1. Of note, neonates homozygous for the DISC1 (rs821616) serine allele exhibited numerous large clusters of reduced GM in the frontal lobes, and neonates homozygous for the COMT valine allele exhibited reduced GM in the temporal cortex and hippocampus, mirroring findings in adults. The results highlight the importance of prenatal brain development in mediating psychiatric risk.
Publication Date: 2013-01-04
Journal: Cerebral cortex (New York, N.Y. : 1991)

Estrogen pathway polymorphisms and mammographic density.
Elevated mammographic density (MD) is strongly associated with breast cancer risk and the estrogen pathway has been proposed as a potential mechanism for this association. It has been repeatedly observed that several established estrogen-related factors associated with breast cancer risk, such as parity and hormone replacement therapy, are also associated with MD. However, the association of circulating estrogen levels (known to be strongly positively associated with breast cancer risk) with MD has so far been inconsistent. Since MD is highly heritable, single nucleotide polymorphisms (SNPs) in genes involved in the estrogen pathway and their relation with MD could provide information that would help understand the link between MD and breast cancer risk. This review of 18 studies describes the relation of SNPs located in genes of the estrogen pathway (genes coding for hydroxysteroid dehydrogenases (HSD3B1, HSD17B1), cytochrome P450 (CYP1A1, CYP1A2, CYP17A1, CYP19A1 and CYP1B1), catechol-O-methyltransferase (COMT), uridine diphospho-glucuronosyltransferase (UGT1A1), sulfotransferases (SULT1A1, SULT1E1) and for estrogen receptors alpha and beta (ESR1, ESR2)) with MD. Most of the SNPs evaluated showed no association with MD when analyses were performed on overall study population. However, when this relation was assessed within strata based on estrogen-related factors, a few SNPs (HSD17B1 (rs2010750, rs598126 and rs676387), COMT (rs4680), UGT1A1 (rs8175347) and ESR1 (rs9340799)) seemed to be related to MD in the same direction of their associations with breast cancer risk. Since such data are very limited, additional research including stratified analyses by factors related to estrogen are needed to validate these findings.
Publication Date: 2011-12-27
Journal: Anticancer research