pubmed > TP53 > stk11

HPV-negative Squamous Cell Carcinomas of the Cervix With Special Focus on Intraepithelial Precursor Lesions.
Recently, the World Health Organization (WHO) recognized human papilloma virus (HPV)-independent invasive cervical squamous cell carcinoma (SCC) without recognizing the existence of precursor lesions. This is a detailed characterization of 3 preinvasive lesions and 6 invasive SCC negative for HPV-DNA (32 genotypes), HPV-mRNA (14 genotypes) and genomic HPV sequencing. We evaluated histologic features, expression of p16ink4a, p53, CK7, and CK17, aberrations in 50 cancer genes and chromosomal copy number variations. HPV-negative preinvasive lesions were extensive basaloid or highly differentiated keratinizing intraepithelial proliferations of 3 to 20 cell layers thickness, partly with prominent cervical gland involvement. Overall, 2/3 intraepithelial lesions and the in situ component of 1/6 SCC showed p16ink4a block staining, while 1/6 in situ component revealed heterogenous p16ink4a staining. All invasive components of keratinizing SCC were p16ink4a-negative. Preinvasive and invasive SCC showed inconsistent CK7 and CK17 staining. Nuclear p53 overexpression was restricted to the TP53 gene mutated SCC. The highly vascularized peritumoral stroma showed a dense inflammatory infiltrate including plasma cells and intratumoral and peritumoral eosinophilic granulocytes. Inconsistent somatic gene mutations (PIK3CA, STK11, TP53, SMARC2B, and GNAS) occurred predominantly in nonhotspot locations at low mutational frequency in 3/6 SCC. Consistent aberrations included the pathogenic (angiogenic) germline polymorphism Q472H in the KDR gene (7/9 patients), and chromosome 3q gains (4/9 patients). In conclusion, HPV-negative intraepithelial cervical precancerous lesions exist, either as highly differentiated keratinized intraepithelial proliferations reminiscent of differentiated vulvar intraepithelial neoplasia, or undifferentiated basaloid intraepithelial lesions with occasional p16ink4a block staining resembling high-grade squamous intraepithelial lesion. Gains of chromosome 3q, angiogenic germline variants the inflammatory infiltrate may contribute to progression of HPV-negative cervical carcinogenesis.
Publication Date: 2021-08-14
Journal: The American journal of surgical pathology

Assessment of clonal expansion using CarcSeq measurement of lung cancer driver mutations and correlation with mouse strain- and sex-related incidence of spontaneous lung neoplasia.
Quantification of variation in levels of spontaneously occurring cancer driver mutations (CDMs) was developed to assess clonal expansion and predict future risk of neoplasm development. Specifically, an error-corrected next generation sequencing method, CarcSeq, and a mouse CarcSeq panel (analogous to human and rat panels) were developed and used to quantify low-frequency mutations in a panel of amplicons enriched in hotspot CDMs. Mutations in a subset of panel amplicons, Braf, Egfr, Kras, Stk11 and Tp53, were related to incidence of lung neoplasms at two years. This was achieved by correlating median absolute deviation (MAD) from the overall median mutant fraction (MF) measured in the lung DNA of 16-week-old male and female, B6C3F1 and CD-1 mice (10 mice/sex/strain) with percentages of spontaneous alveolar/bronchioloalveolar adenomas and carcinomas reported in bioassay control groups. 1,586 mouse lung mutants with MFs >1 x 10-4 were recovered. The ratio of non-synonymous to synonymous mutations was used to assess the proportion of recovered mutations conferring a positive selective advantage. The greatest ratio was observed in what is considered the most lung tumor-sensitive model examined, male B6C3F1 mice. Of the recurrent, non-synonymous mouse mutations recovered, 55.5% have been reported in human tumors, with many located in or around the mouse equivalent of human cancer hotspot codons. MAD for the same subset of amplicons measured in normal human lung DNA samples showed a correlation of moderate strength and borderline significance) with age (a cancer risk factor), as well as age-related cumulative lung cancer risk, suggesting MAD may inform species extrapolation.
Publication Date: 2021-08-11
Journal: Toxicological sciences : an official journal of the Society of Toxicology

A retrospective observational study of the natural history of advanced non-small-cell lung cancer in patients with KRAS p.G12C mutated or wild-type disease.
The KRAS p.G12C mutation, prevalent in non-small-cell lung cancer (NSCLC), has only recently become a viable target. Here we present results of the largest retrospective observational study analyzing KRAS p.G12C in patients with advanced NSCLC. Adults with advanced NSCLC (All Advanced NSCLC cohort) and subcohorts with different mutation profiles (KRAS p.G12C [G12C] and KRAS/EGFR/ALK wild type [Triple WT]) diagnosed January 2011 to March 2019 were selected from a US clinico-genomic database; treatment-related characteristics, molecular profiles, real-world overall (rwOS) and progression-free survival (rwPFS) were analyzed. Demographics were similar across cohorts, with more smokers and nonsquamous cell carcinoma histology in the G12C cohort. KRAS p.G12C was nearly mutually exclusive (≤1.2 %) with known actionable driver mutations, but non-driver co-mutations were common (STK11, 21.5 %; KEAP1, 7.0 %; TP53, 48.0 %). Among G12C patients, 20 % had no documentation of receiving systemic therapy. Across treated G12C patients, 67 % received immune checkpoint inhibitors; first-line usage increased from 0% (2014) to 81 % (2019). Among G12C patients, median (95 % CI) rwOS was 12.0 (9.6-15.3), 9.5 (8.1-13.1), and 6.7 (5.9-10.7) months after first, second, and third line of therapy, respectively; median (95 % CI) rwPFS was 5.0 (4.4-5.8), 4.0 (2.8-5.3), and 3.1 (2.4-4.3) months. Outcomes for the G12C subcohort were similar to those for all patients (All Advanced NSCLC cohort). Mutations in STK11/KEAP1 were associated with poorer survival across all cohorts. The poor outcomes associated with KRAS p.G12C mutated advanced NSCLC indicate an unmet need for more effective novel treatments.
Publication Date: 2021-07-23
Journal: Lung cancer (Amsterdam, Netherlands)

Recent updates in thoracic SMARCA4-deficient undifferentiated tumor.
Germline inactivating mutations in SMARCA4 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 4) gene encoding for BRG1 (Brahma related gene-1) are the molecular drivers in small cell carcinoma of ovary, hypercalcemic type (SCCOHT) and in malignant rhabdoid tumors (MRT) that occur in the context of rhabdoid tumor predisposition syndrome-type 2. Somatic SMARCA4 mutations and/or loss of BRG1 have been identified in a variety of adult-onset epithelial and mesenchymal neoplasms. Among thoracic tumors, these include subsets of smoking-related non-small cell lung carcinoma (NSCLC) and a relatively rare, newly recognised tumor entity: thoracic SMARCA4-deficient undifferentiated tumor (SMARCA4-UT). Less than 100 cases of SMARCA4-UT have been reported to date. They present as large compressive and infiltrative mediastinal, lung and/or pleural masses in middle-aged male smokers. They are undifferentiated tumors composed of sheets of small/epithelioid and/or rhabdoid tumor cells variably expressing epithelial markers and consistently showing loss of BRG1 and the closely related protein, Brahma (BRM). Frequent expression of stem cell markers (SOX2, CD34, SALL4) is noted. Despite gene expression profiles similar to MRTs and SCCOHT, they show striking genomic overlap with SMARCA4-mutant NSCLC with frequent TP53, STK11, KEAP1, and KRAS mutations, high tumor mutation burden (TMB), and presence of smoking related molecular signatures in tumor cells. SMARCA4-UT show uniformly poor survival and are irresponsive to conventional therapies. Immunotherapy responses are variable but promising, although PDL1 expression appears to be of poor predictive value. Drugs exploiting genetic and epigenetic mechanisms of SMARCA4 antagonism hold promise for future targeted therapies.
Publication Date: 2021-06-21
Journal: Seminars in diagnostic pathology

Circulating tumor DNA in advanced non-small-cell lung cancer patients with HIV is associated with shorter overall survival: Results from a Phase II trial (IFCT-1001 CHIVA).
HIV is an exclusion criterion for most lung cancer (LC) trials, however LC is the most common non-AIDS-defined malignancy in people living with HIV (PLHIV), poorer prognosis than the general population. Circulating tumor DNA (ctDNA) was a prognostic marker in LC patients from the general population. This study assessed ctDNA's prognostic value in PLHIV from a dedicated phase II trial. Overall, 61 PLHIV with advanced non-squamous non-small-cell lung cancer (NSCLC) participated in the IFCT Phase II trial evaluating first-line four-cycle carboplatin (Ca) AUC5 pemetrexed (P) 500 mg/m Appropriate samples were available from 55 PLVIH and analyzed for ctDNA detection. Including 42 males (76.4 %), 52.9 years median age, 51 smokers (92.7 %), five with non-squamous NSCLC Stage III (9%), 50 Stage IV (91 %), and performance status (PS) 0-2. ctDNA was detected in 35 patients (64 %), 22 with high and 13 with low ctDNA levels. Overall, 77 % were positive for TP53, 29 % for KRAS, and 11 % for STK11 mutations, more than one alteration was detected in 43 % of samples. Multivariate analysis showed that positive ctDNA was significantly associated with shorter PFS (HR, 4.31, 95 %CI: 2.06-8.99, p < 0.0001), and shorter OS (HR, 3.52, 95 %CI: 1.72-7.19, p < 0.001). Moreover, OS was significantly longer for patients with low ctDNA levels at diagnosis as compared to high (p = 0.01). We show that ctDNA detection using ultra-deep NGS is an independent prognostic factor in PLHIV with advanced NSCLC.
Publication Date: 2021-05-22
Journal: Lung cancer (Amsterdam, Netherlands)

Tumor microenvironment disparity in multiple primary lung cancers: Impact of non-intrinsic factors, histological subtypes, and genetic aberrations.
Multiple primary lung cancers (MPLCs) occur in common carcinogenetic risks such as lifestyle, biological aging, immune responses, hormones, and metabolism. Although MPLCs harbor various genetic profiles within the same individuals, differences in the tumor microenvironment (TME) are unclear. We investigated the impact of genetic aberrations, non-intrinsic factors, and pathological subtypes on tumor immunity. In total, 73 surgically resected specimens from 32 patients with MPLC were analyzed. PD-L1 expression in tumor cells (TCs) and immune cells (ICs), CD3-positive tumor-infiltrating lymphocytes (TILs), CD8/CD3 ratios, and FOXP3-positive TILs that compose TMEs were evaluated by immunohistochemistry and classified on a score of 0-2. 38 tumors were sequenced for somatic mutations in 409 cancer-associated genes. Females and never or light smokers had a higher incidence of PD-L1-negative tumors and a higher concordance rate. PD-L1 positivity in TCs and ICs was significantly less frequent in EGFR-mutated than in wild-type tumors. Differences in the score of TMEs were observed between the KRAS-mutated-only tumor and the KRAS and TP53-co-mutated tumors, and between the KRAS-mutated-only tumor and the KRAS and STK11-co-mutated tumors. Significantly more FOXP3-high TILs were observed in invasive pathological subtypes than in non-invasive ones. Comparing TMEs among MPLCs revealed that non-smokers or light smokers and females were unlikely to express PD-L1 regardless of tumor site and confirmed that the EGFR mutations and co-occurring KRAS and STK11 or TP53 mutations were associated with TME. Pathological subtypes may impact the efficacy of immune therapy due to their potential correlations with regulatory T cells.
Publication Date: 2021-05-01
Journal: Translational oncology

Serine/Threonine Kinase 11 Plays a Canonical Role in Malignant Progression of KRAS-mutant and GNAS-wild-type Intraductal Papillary Mucinous Neoplasms of the Pancreas.
We aimed to elucidate the clinicopathobiological significance of Serine/Threonine Kinase 11 (STK11) in pancreatic intraductal papillary mucinous neoplasms (IPMNs). STK11 is a tumor suppressor involved in certain IPMNs, however, its significance is not well known. In 184 IPMNs without Peutz-Jeghers syndrome, we analyzed expression of STK11 and phosphorylated-AMPKα in all cases, and p16, p53, SMAD4, and β-catenin in 140 cases by immunohistochemistry; and we analyzed mutations in 37 genes, including whole coding exons of STK11, CDKN2A, TP53, and SMAD4, and hotspots of KRAS, BRAF, and GNAS in 64 cases by targeted sequencing. KRAS and GNAS were additionally analyzed in 86 STK11-normal IPMNs using digital-PCR. Consistent loss or reduction of STK11 expression was observed in 26/184 (14%) IPMNs. These STK11-aberrant IPMNs were 17/45 (38%) pancreatobiliary, 8/27 (30%) oncocytic, 1/54 (2%) gastric, and 0/58 (0%) intestinal subtypes (P = 8.5E-11), and 20/66 (30%) invasive, 6/74 (8%) high-grade, and 0/44 (0%) low-grade (P = 3.9E-06). Sixteen somatic STK11 mutations (5 frameshift, 6 nonsense, 1 splicing, and 4 missense) were detected in 15/26 STK11-aberrant IPMNs (P = 4.1E-06). All STK11-aberrant IPMNs were GNAS-wild-type and 96% of them were KRAS or BRAF-mutant. Morphologically, STK11-aberrant IPMNs presented "fern-like" arborizing papillae with thin fibrovascular core. Phosphorylated-AMPKα was downregulated in STK11-aberrant IPMNs (92%, P = 6.8E-11). Patients with STK11-aberrant IPMNs showed poorer survival than patients with STK11-normal IPMNs (P = 3.6E-04 overall; P = 6.1E-04 disease-free). STK11 may play a canonical role in malignant progression and poor survival of patients with IPMNs. Aberrant STK11-driven phosphorylated AMPK downregulation may provide therapeutic opportunities with mTOR inhibitors/AMPK activators.
Publication Date: 2021-04-30
Journal: Annals of surgery

The acylfulvene alkylating agent, LP-184, retains nanomolar potency in non-small cell lung cancer carrying otherwise therapy-refractory mutations.
More than 40% of non-small cell lung cancer (NSCLC) patients lack actionable targets and require non-targeted chemotherapeutics. Many become refractory to drugs due to underlying resistance-associated mutations. KEAP1 mutant NSCLCs further activate NRF2 and upregulate its client PTGR1. LP-184, a novel alkylating agent belonging to the acylfulvene class is a prodrug dependent upon PTGR1. We hypothesized that NSCLC with KEAP1 mutations would continue to remain sensitive to LP-184. LP-184 demonstrated highly potent anticancer activity both in primary NSCLC cell lines and in those originating from brain metastases of primary lung cancers. LP-184 activity correlated with PTGR1 transcript levels but was independent of mutations in key oncogenes (KRAS and KEAP1) and tumor suppressors (TP53 and STK11). LP-184 was orders of magnitude more potent
Publication Date: 2021-04-24
Journal: Oncotarget

Comprehensive genomic profiling and prognostic analysis of cervical gastric-type mucinous adenocarcinoma.
Gastric-type mucinous adenocarcinoma (GAS) is an uncommon cervical adenocarcinoma, which is not associated with human papillomavirus (HPV) infection. Compared with HPV-associated cervical adenocarcinoma, GAS has characteristics of larger volume, deep invasion, and easy to metastasize to distant sites. Also, GAS is typically resistant to chemo/radiotherapy. Few studies have reported the molecular genetic characteristics of GAS. In order to investigate the molecular genetic characteristics of GAS and reveal its possible pathogenesis, 15 GAS patients were enrolled from Peking University People's Hospital (2009-2019) and examined with next-generation sequencing (NGS). Based on the clinicopathologic feature analysis, we found that the presence of lymph node metastasis and extensive lymphovascular invasion were associated with poor survival outcomes of GAS (p = 0.0042 and p = 0.005, respectively). Based on the NGS testing, our results showed that the most frequently mutated gene was TP53 (8/15, 53.3%), followed by STK11, CDKN2A, and ARID1A. STK11 mutations were more frequent in well-differentiated GAS (33.3% vs. 0.0%, p = 0.026) and patients with extensive lymphovascular invasion (33.3% vs. 0.0%, p = 0.044). Survival analysis revealed that STK11 mutations were significantly associated with the poor prognosis of GAS (p = 0.01). Our results also showed that mutations in the target drug were detected in 53.3% of GAS patients. Patients with ERBB2 amplification (13.3%) presented the highest level of evidence according to OncoKB recommendations. These results indicate that the genomic alterations of GAS mainly involved the cell cycle and PI3K/AKT signaling pathways, and some therapeutic candidates were identified in GAS patients.
Publication Date: 2021-04-06
Journal: Virchows Archiv : an international journal of pathology

New germline mutations in BRCA1, ATM, MUTYH, and RAD51D genes in Tuvans early-onset breast cancer patients.
In Russia, more than 50,000 women are diagnosed with breast cancer (BC) every year. Russia is a multinational country - about 200 ethnic groups live on its territory. Khakass, Buryats, Tuvans and other ethnic groups show higher rate of increase in BC incidence and a younger age of first diagnosed BC compared to Caucasian ethnicities. We focused on Tuvan ethnic group to find specific genetic aberrations associated with BC. There are no BC prevention models as well as standards for the treatment of inherited BC in Tuvans. In this context, the search for genetic markers of early cancer detection and the development of criteria for therapy response are relevant. To identify hereditary mutations in BC-associated genes in Tuvan women. 24 patients with early-onset BC (range, 25 to 46 years) were enrolled in the study. Genomic DNA isolated from blood samples was used to prepare libraries using a capture-based target enrichment kit covering 27 genes (ATM, APC, BARD1, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, EPCAM, FAM175A, MLH1, MRE11A, MSH2, MSH6, MUTYH, NBN, PALB2, PIK3CA, PMS2, PMS2CL, PTEN, RAD50, RAD51C, RAD51D, STK11, TP53 and XRCC2). Next-generation sequencing was performed using the Illumina NextSeq500 System. In our study, one pathogenic mutation was detected in BRCA1 (rs80357868) gene (prevalence of 4%, 1/24). We identified the truncating 3875_3878delGTCT mutation of BRCA1 gene in Tuvans BC patient aged 34 years. We also detected three mutations that were probably damaging by PolyPhen2 and/or deleterious by SIFT in ATM (rs781023264), MUTYH (rs199840380) and RAD51D (rs145309168) genes. To the best of our knowledge, this is the first report that describes the highly pathogenic variant in the BRCA1 gene (rs80357868) and possibly damaging (PolyPhen2) germline variants in the ATM (rs781023264), MUTYH (rs199840380) and RAD51D (rs145309168) genes in young Tuvans BC patient.
Publication Date: 2021-04-01
Journal: Experimental oncology

Comparative Analysis of Stk11/Lkb1 versus Pten Deficiency in Lung Adenocarcinoma Induced by CRISPR/Cas9.
This study focused on STK11, PTEN, KRAS, and TP53, which are often found to be mutated in lung cancer. We compared Stk11 and Pten implication in lung cancer in combination with loss of Trp53 and gain of function of Kras in a CRISPR/Cas9 mouse model. Mice with loss of Stk11, Trp53, and KrasG12D mutation (SKT) reached human endpoint at around four months post-initiation. In comparison, mice with loss of Pten, Trp53, and KrasG12D mutation (PKT) survived six months or longer post-initiation. Pathological examination revealed an increase in proliferation in SKT deficient lung epithelia compared to PKT. This difference was independent of Pten loss, indicating that loss of Pten is dispensable for cell proliferation in lung adenocarcinoma. Furthermore, tumors with loss of Stk11, Trp53, and KrasG12D mutation had a significantly higher progression rate, monitored by PET/MRI scanning, compared to mice with loss of Pten, Trp53, and KrasG12D mutation, revealing that mutations in Stk11 are essential for adenocarcinoma progression. Overall, by using the CRISPR/Cas9 mouse model of lung adenocarcinoma, we showed that mutations in Stk11 are a key driver, whereas loss of Pten is dispensable for adenocarcinoma progression.
Publication Date: 2021-03-04
Journal: Cancers

Identification and Validation of Efficacy of Immunological Therapy for Lung Cancer From Histopathological Images Based on Deep Learning.
Cancer immunotherapy, as a novel treatment against cancer metastasis and recurrence, has brought a significantly promising and effective therapy for cancer treatments. At present, programmed death 1 (PD-1) and programmed cell death-Ligand 1 (PD-L1) treatment for lung cancer is primarily recognized as an immune checkpoint inhibitor (ICI) to play an anti-tumor effect; however, it remains uncertain regarding of its efficacy though. Thereafter, tumor mutation burden (TMB) was recognized as a high-potential to be a predictive marker for the immune therapy, but it is invasive and costly. Therefore, discovering more immune-related biomarkers that have a guiding role in immunotherapy is a crucial step in the development of immunotherapy. In our study, we proposed a deep convolutional neural network (CNN)-based framework, DeepLRHE, which can efficiently analyze immunological stained pathological images of lung cancer tissues, as well as to identify and explore pathogenesis which can be used for immunological treatment in clinical field. In this study, we used 180 whole slice images (WSIs) of lung cancer downloaded from TCGA which was model training and validation. After two cross-validation used for this model, we compared with the area under the curve (AUC) of multiple mutant genes, TP53 had highest AUC, which reached 0.87, and EGFR, DNMT3A, PBRM1, STK11 also reached ranged from 0.71 to 0.84. The study results showed that the deep learning can used to assist health professionals for target-therapy as well as immunotherapies, therefore to improve the disease prognosis.
Publication Date: 2021-02-27
Journal: Frontiers in genetics

Role of next generation sequencing-based liquid biopsy in advanced non-small cell lung cancer patients treated with immune checkpoint inhibitors: impact of STK11, KRAS and TP53 mutations and co-mutations on outcome.
Characterization of tumor-related genetic alterations is promising for the screening of new predictive markers in non-small cell lung cancer (NSCLC). Aim of the study was to evaluate prognostic and predictive role of most frequent tumor-associated genetic alterations detected in plasma before starting immune checkpoint inhibitors (ICIs). Between January 2017 and October 2019, advanced NSCLC patients were prospectively screened with plasma next-generation sequencing (NGS) while included in two trials: VISION (NCT02864992), using Guardant360 A total of 103 patients receiving ICIs were analyzed: median overall survival (OS) was 20.8 (95% CI: 16.7-24.9) months and median immune-related progression free disease (irPFS) 4.2 (95% CI: 2.3-6.1) months. TP53 mutations in plasma negatively affected OS both in patients treated with ICIs and in control group (P=0.001 and P=0.009), indicating a prognostic role. STK11 mutated patients (n=9) showed a trend for worse OS only if treated with ICIs. The presence of KRAS/STK11 co-mutation and KRAS/STK11/TP53 co-mutation affected OS only in patients treated with ICIs (HR =10.936, 95% CI: 2.337-51.164, P=0.002; HR =17.609, 95% CI: 3.777-82.089, P<0.001, respectively), indicating a predictive role. Plasma genotyping demonstrated prognostic value of TP53 mutations and predictive value of KRAS/STK11 and KRAS/STK11/TP53 co-mutations.
Publication Date: 2021-02-12
Journal: Translational lung cancer research

STK11 loss drives rapid progression in a breast cancer patient resulting in pulmonary tumor thrombotic microangiopathy.
We experienced a case of breast cancer in which liver metastases spread rapidly and the patient died of pulmonary tumor thrombotic microangiopathy (PTTM). PTTM is a fatal cancer-associated respiratory complication disease. To reveal genetic alterations of the clinical course, we performed next generation sequencing of the serial specimens using the Ion AmpliSeqTM Comprehensive Cancer Panel and RNA sequencing for transcriptomic data, followed by gene set analysis. The analysis revealed an oncogenic TP53 R213* mutation in all specimens and STK11 loss in tissues sampled after disease progression. Immunohistochemistry with an anti-STK11 antibody confirmed no STK11 expression in the samples after progression. Transcriptome analysis showed a significant downregulation of proteins associated with apoptosis in the specimens with STK11 loss. STK11 loss may have triggered the rapid progression of PTTM from a comprehensive genomic analysis.
Publication Date: 2021-01-04
Journal: Breast cancer (Tokyo, Japan)

Massively parallel sequencing analysis of 68 gastric-type cervical adenocarcinomas reveals mutations in cell cycle-related genes and potentially targetable mutations.
Gastric-type cervical adenocarcinoma (GCA) is an aggressive type of endocervical adenocarcinoma characterized by mucinous morphology, gastric-type mucin, lack of association with human papillomavirus (HPV) and resistance to chemo/radiotherapy. We characterized the landscape of genetic alterations in a large cohort of GCAs, and compared it with that of usual-type HPV-associated endocervical adenocarcinomas (UEAs), pancreatic adenocarcinomas (PAs) and intestinal-type gastric adenocarcinomas (IGAs). GCAs (n = 68) were subjected to massively parallel sequencing targeting 410-468 cancer-related genes. Somatic mutations and copy number alterations (CNAs) were determined using validated bioinformatics methods. Mutational data for UEAs (n = 21), PAs (n = 178), and IGAs (n = 148) from The Cancer Genome Atlas (TCGA) were obtained from cBioPortal. GCAs most frequently harbored somatic mutations in TP53 (41%), CDKN2A (18%), KRAS (18%), and STK11 (10%). Potentially targetable mutations were identified in ERBB3 (10%), ERBB2 (8%), and BRAF (4%). GCAs displayed low levels of CNAs with no recurrent amplifications or homozygous deletions. In contrast to UEAs, GCAs harbored more frequent mutations affecting cell cycle-related genes including TP53 (41% vs 5%, p < 0.01) and CDKN2A (18% vs 0%, p = 0.01), and fewer PIK3CA mutations (7% vs 33%, p = 0.01). TP53 mutations were less prevalent in GCAs compared to PAs (41% vs 56%, p < 0.05) and IGAs (41% vs 57%, p < 0.05). GCAs showed a higher frequency of STK11 mutations than PAs (10% vs 2%, p < 0.05) and IGAs (10% vs 1%, p < 0.05). GCAs harbored more frequent mutations in ERBB2 and ERBB3 (9% vs 1%, and 10% vs 0.5%, both p < 0.01) compared to PAs, and in CDKN2A (18% vs 1%, p < 0.05) and KRAS (18% vs 6%, p < 0.05) compared to IGAs. GCAs harbor recurrent somatic mutations in cell cycle-related genes and in potentially targetable genes, including ERBB2/3. Mutations in genes such as STK11 may be used as supportive evidence to help distinguish GCAs from other adenocarcinomas with similar morphology in metastatic sites.
Publication Date: 2020-12-16
Journal: Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc

Comprehensive genomic profiling of Brazilian non-small cell lung cancer patients (GBOT 0118/LACOG0418).
The aim of this study was to carry out a descriptive analysis of the somatic genetic profile and co-occurring mutations of non-small cell lung cancer (NSCLC) samples from patients tested with comprehensive genomic profiling (CGP). This was a retrospective cross-sectional study of patients diagnosed with NSCLC from 2013 to 2018 in Brazil and whose samples were submitted to CGP (FoundationOne or FoundationACT) using either tumor or circulating tumor DNA (ctDNA) from plasma. We recovered 513 CGP results from patients, 457 (89.1%) of which were from tumors and 56 (10.9%) from plasma. The median age of patients was 64 years old, of which 51.6% were males. TP53 mutations were identified in 53.6% of tumor samples, KRAS mutations in 24.2%, EGFR activating mutations were detected in 22.5%, STK11 mutations in 11.6%, PIK3CA mutations in 8.8%, ALK rearrangements in 5.4%, BRAF mutations in 5.2%, and ERBB2 alterations in 4.9%. The most commonly comutated gene was TP53. TP53 p.R337H was observed in 4.3% of samples and was associated with somatic mutations in EGFR and ERBB2 (P < 0.00001). Tumor mutational burden (TMB) analysis was available for 80.5% of samples tested, and 5.5% of samples had high TMB (≥ 20 mutations/Mb). In conclusion, this retrospective analysis of genomic data from NSCLC patients obtained by CGP showed that common abnormalities such as EGFR mutations and ALK rearrangements had similar frequency to those previously described by other groups using others strategies. Additionally, our data confirm an association between TP53 p.R337H, supposedly germline in nature, and somatic mutations in genes of the HER family. SIGNIFICANT FINDINGS OF THE STUDY: This is the first report of the prevalence of driver mutations in Brazilian NSCLC patients using comprehensive genomic profiling (CGP). The frequency of the most common driver mutations in this population was similar to that previously described in Brazil. TP53 was the most commonly comutated gene across samples. TP53 p.R337H was associated with somatic mutations in EGFR and ERBB2. Most samples had low TMB; only 5.5% of samples had high TMB.
Publication Date: 2020-12-15
Journal: Thoracic cancer

Independent Prognostic Potential of GNPNAT1 in Lung Adenocarcinoma.
Glucosamine-Phosphate N-Acetyltransferase 1 (GNPNAT1) is a critical enzyme in the biosynthesis of uridine diphosphate-N-acetylglucosamine. It has many important functions, such as protein binding, monosaccharide binding, and embryonic development and growth. However, the role of GNPNAT1 in lung adenocarcinoma (LUAD) remains unclear. In this study, we explored the expression pattern and prognostic value of GNPNAT1 in LUAD across TCGA and GEO databases and assessed its independent prognostic value via Cox analysis. LinkedOmics and GEPIA2 were applied to investigate coexpression and functional networks associated with GNPNAT1. The TIMER web tool was deployed to assess the correlation between GNPNAT1 and the main six types of tumor-infiltrating immune cells. Besides, the correlations between GNPNAT1 and the LUAD common genetic mutations, TMB, and immune signatures were examined. GNPNAT1 was validated upregulated in tumor tissues in TCGA-LUAD and GEO cohorts. Moreover, in both TCGA and GEO cohorts, high GNPNAT1 expression was found to be associated with poor overall survival. Cox analysis showed that high GNPNAT1 expression was an independent risk factor for LUAD. Functional network analysis suggested that GNPNAT1 regulates cell cycle, ribosome, proteasome, RNA transport, and spliceosome signaling through pathways involving multiple cancer-related kinases and E2F family. In addition, GNPNAT1 correlated with infiltrating levels of B cells, CD4+ T cells, and dendritic cells. B cells and dendritic cells could predict the outcome of LUAD, and B cells and CD4+ T cells were significant independent risk factors. The TMB and mutations of KRAS, EGFR, STK11, and TP53 were correlated with GNPNAT1. At last, the correlation analysis showed GNPNAT1 correlated with most of the immune signatures we performed. Our findings showed that GNPNAT1 was correlated to the prognosis and immune infiltration of LUAD. In particular, the tight relationship between GNPNAT1 and B cell marker genes may be the epicenter of the immune response and one of the key factors affecting the prognosis. Our findings laid the foundation for further research on the immunomodulatory role of GNPNAT1 in LUAD.
Publication Date: 2020-11-13
Journal: BioMed research international

Discovery of driver non-coding splice-site-creating mutations in cancer.
Non-coding mutations can create splice sites, however the true extent of how such somatic non-coding mutations affect RNA splicing are largely unexplored. Here we use the MiSplice pipeline to analyze 783 cancer cases with WGS data and 9494 cases with WES data, discovering 562 non-coding mutations that lead to splicing alterations. Notably, most of these mutations create new exons. Introns associated with new exon creation are significantly larger than the genome-wide average intron size. We find that some mutation-induced splicing alterations are located in genes important in tumorigenesis (ATRX, BCOR, CDKN2B, MAP3K1, MAP3K4, MDM2, SMAD4, STK11, TP53 etc.), often leading to truncated proteins and affecting gene expression. The pattern emerging from these exon-creating mutations suggests that splice sites created by non-coding mutations interact with pre-existing potential splice sites that originally lacked a suitable splicing pair to induce new exon formation. Our study suggests the importance of investigating biological and clinical consequences of noncoding splice-inducing mutations that were previously neglected by conventional annotation pipelines. MiSplice will be useful for automatically annotating the splicing impact of coding and non-coding mutations in future large-scale analyses.
Publication Date: 2020-11-06
Journal: Nature communications

Ovarian cancer predisposition beyond BRCA1 and BRCA2 genes.
Several genes associated with hereditary ovarian cancer have been discovered as a result of the work done with next generation sequencing. It is estimated that approximately 23% of ovarian carcinomas have a hereditary predisposition. The most common hereditary condition is represented by germline mutations in BRCA1 or BRCA2 genes that account for 20-25% of high grade serous ovarian cancer. A number of other hereditary ovarian cancers are associated with different genes, with a crucial role in the DNA damage response pathway, such as the mismatch repair genes in Lynch syndrome, TP53 in Li-Fraumeni syndrome, STK11 in Peutz-Jeghers syndrome, CHEK2, RAD51, BRIP1, and PALB2. The goal of this manuscript is to summarize the published data regarding the molecular pathways involved in the pathogenesis of non-BRCA related hereditary ovarian cancer and to provide a tool that might be useful in discussing risk assessment, genetic testing, prevention strategies, as well as clinical and therapeutic implications for patients with ovarian cancer.
Publication Date: 2020-09-09
Journal: International journal of gynecological cancer : official journal of the International Gynecological Cancer Society

Clinicopathological and Molecular Differences Between Gastric-type Mucinous Carcinoma and Usual-type Endocervical Adenocarcinoma of the Uterine Cervix.
We investigated differences in the clinicopathological and molecular characteristics between gastric-type mucinous carcinoma (GMC) and usual-type endocervical adenocarcinoma (UEA). We collected the clinicopathological information and performed targeted genomic sequencing analysis. GMCs exhibited significantly deeper invasion depth, larger horizontal spread, more advanced stage, more frequent distant metastasis, and more frequent parametrial and vaginal extension. Disease-free survival time of GMC patients was significantly shorter than that of UEA patients. GMCs displayed mutant p53 immunostaining pattern, whereas UEAs exhibited p16 block positivity. GMCs harbored mutations in KRAS, TP53, NF1, CDKN2A, STK11, and ARID1A. One GMC exhibited MDM2 amplification. In contrast, UEAs harbored mutations in HRAS, PIK3CA, and BRCA2. Two UEAs were found to have novel TP53 mutations. GMC is associated with more aggressive behavior than UEA. Distinctive p53 and p16 immunostaining patterns enable differential diagnosis. GMC and UEA exhibit genetic heterogeneity with potentially actionable molecular alterations.
Publication Date: 2020-08-30
Journal: Cancer genomics & proteomics

8 7(1)

5 7(1)

0 001 q(1)

p 0 007(1)

n 1(1)

p 001(1)

vs 44 9(1)

vs 0 0(1)

4 6 66 7(1)

0 00001 additionally(1)

chek2 palb2(1)

13 66(1)

cell p(1)

p 0 004(1)

p 0 0001(1)

keap1 7 0(1)

p 0 17(1)

vs 34(1)

stk11 sdhc(1)

flt3 gnas(1)

2 337-51 164 p 0 002(1)

139 154 90 3(1)

tgf-b notch1(1)

mutations however(1)

41 vs(1)

tp53 nf1(1)

vs 21(1)

stk11 k312(1)

3 21 14 3(1)

1 6 vs 12 3(1)