pubmed > TP53 > survival

KEAP1 and TP53 frame genomic, evolutionary and immunological subtypes of lung adenocarcinoma with different sensitivity to immunotherapy.
The connection between driver mutations and efficacy of immune-checkpoint inhibitors (ICIs) is the focus of intense investigations. In lung adenocarcinoma (LUAD), KEAP1/STK11 alterations have been tied to immunoresistance. Nevertheless, the heterogeneity characterizing immunotherapy efficacy suggests the contribution of still unappreciated events. Somatic interaction analysis of top-ranking mutant genes in LUAD was carried out in the AARC project GENIE (N=6208). Mutational processes, intratumor heterogeneity, evolutionary trajectories, immunological features and cancer-associated signatures were investigated exploiting multiple datasets (AACR GENIE, TCGA, TRACERx). The impact of the proposed subtyping on survival outcomes was assessed in two independent cohorts of ICI-treated patients: the tissue-based sequencing cohort (Rome/MSKCC/DFCI, tNGS cohort, N=343) and the blood-based sequencing cohort (OAK/POPLAR trials, bNGS cohort, N=304). Observing the neutral interaction between KEAP1 and TP53, KEAP1/TP53-based subtypes were dissected at the molecular and clinical level. KEAP1 single-mutant (KEAP1 SM) and KEAP1/TP53 double-mutant (KEAP1/TP53 DM) LUAD share a transcriptomic profile characterized by AKR gene overexpression, which are under the control of a productive super-enhancer with NEF2L2-binding signals. Nevertheless, KEAP1 SM and KEAP1/TP53 DM tumors differ by mutational repertoire, degree of intratumor heterogeneity, evolutionary trajectories, pathway-level signatures and immune microenvironment composition. In both cohorts (bNGS and tNGS), KEAP1 SM tumors had the shortest survival, the KEAP1/TP53 DM subgroup had intermediate prognosis matching that of pure TP53 LUAD, whereas the longest survival was noticed in the double-wild-type group. Our data provide a framework for genomically-informed immunotherapy, highlighting the importance of multi-modal data integration to achieve a clinically exploitable taxonomy.
Publication Date: 2021-08-28
Journal: Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer

Cooperation between liver-specific mutations of pten and tp53 genetically induces hepatocarcinogenesis in zebrafish.
Liver cancer, mainly hepatocellular carcinoma, is one of the deadliest cancers worldwide and has a poor prognosis due to insufficient understanding of hepatocarcinogenesis. Previous studies have revealed that the mutations in PTEN and TP53 are the two most common genetic events in hepatocarcinogenesis. Here, we illustrated the crosstalk between aberrant Pten and Tp53 pathways during hepatocarcinogenesis in zebrafish. We used the CRISPR/Cas9 system to establish several transgenic zebrafish lines with single or double tissue-specific mutations of pten and tp53 to genetically induce liver tumorigenesis. Next, the morphological and histological determination were performed to investigate the roles of Pten and Tp53 signalling pathways in hepatocarcinogenesis in zebrafish. We demonstrated that Pten loss alone induces hepatocarcinogenesis with only low efficiency, whereas single mutation of tp53 failed to induce tumour formation in liver tissue in zebrafish. Moreover, zebrafish with double mutations of pten and tp53 exhibits a much higher tumour incidence, higher-grade histology, and a shorter survival time than single-mutant zebrafish, indicating that these two signalling pathways play important roles in dynamic biological events critical for the initiation and progression of hepatocarcinogenesis in zebrafish. Further histological and pathological analyses showed significant similarity between the tumours generated from liver tissues of zebrafish and humans. Furthermore, the treatment with MK-2206, a specific Akt inhibitor, effectively suppressed hepatocarcinogenesis in zebrafish. Our findings will offer a preclinical animal model for genetically investigating hepatocarcinogenesis and provide a useful platform for high-throughput anticancer drug screening.
Publication Date: 2021-08-22
Journal: Journal of experimental & clinical cancer research : CR

Identification of Tumor Microenvironment-Related Prognostic lncRNAs in Lung Adenocarcinoma.
Lung adenocarcinoma (LUAD) is the most common type of lung cancer and is a severe threat to human health. Although many therapies have been applied to LUAD, the long-term survival rate of patients remains unsatisfactory. We aim to find reliable immune microenvironment-related lncRNA biomarkers to improve LUAD prognosis. ESTIMATE analysis was performed to evaluate the degree of immune infiltration of each patient in TAGA LUAD cohort. Correlation analysis was used to identify the immune microenvironment-related lncRNAs. Univariate cox regression analysis, LASSO analysis, and Kaplan Meier analysis were used to construct and validate the prognostic model based on microenvironment-related lncRNAs. We obtained 1,178 immune microenvironment-related lncRNAs after correlation analysis. One hundred and eighty of them are independent prognostic lncRNAs. Sixteen key lncRNAs were selected by LASSO method. This lncRNA-based model successfully predicted patients' prognosis in validation cohort, and the risk score was related to pathological stage. Besides, we also found that TP53 had the highest frequency mutation in LUAD, and the mutation of TP53 in the high-risk group, which was identified by our survival model, has a poor prognosis. lncRNA-mRNA co-expression network further suggested that these lncRNAs play a vital role in the prognosis of LUAD. Here, we filtered 16 key lncRNAs, which could predict the survival of LUAD and may be potential biomarkers and therapeutic targets.
Publication Date: 2021-08-20
Journal: Frontiers in oncology

Clinical significance of TP53 mutations in adult T-cell leukemia/lymphoma.
Adult T-cell leukaemia/lymphoma (ATL) patients have a poor prognosis. Here, we investigated the impact of TP53 gene mutations on prognosis of ATL treated in different ways. Among 177 patients, we identified 47 single nucleotide variants or insertion-deletions (SNVs/indels) of the TP53 gene in 37 individuals. TP53 copy number variations (CNVs) were observed in 38 patients. Altogether, 67 of 177 patients harboured TP53 SNVs/indels or TP53 CNVs, and were categorized as having TP53 mutations. In the entire cohort, median survival of patients with and without TP53 mutations was 1·0 and 6·7 years respectively (P < 0·001). After allogeneic haematopoietic stem cell transplantation (HSCT), median survival of patients with (n = 16) and without (n = 29) TP53 mutations was 0·4 years and not reached respectively (P = 0·001). For patients receiving mogamulizumab without allogeneic HSCT, the median survival from the first dose of antibody in patients with TP53 mutations (n = 27) was only 0·9 years, but 5·1 years in those without (n = 42; P < 0·001). Thus, TP53 mutations are associated with unfavourable prognosis of ATL, regardless of treatment strategy. The establishment of alternative modalities to overcome the adverse impact of TP53 mutations in patients with ATL is required.
Publication Date: 2021-08-19
Journal: British journal of haematology

Molecular Characterization and Clinical Treatment of Acute Myeloid Leukemia (AML) and Myelodysplastic Syndromes (MDS) Patients With TP53 Mutation.
Mutations in TP53 in myeloid neoplasms patients have been associated with poor prognosis. Effective treatments to these patients remain unclear. In this study, we retrospectively analyzed diagnostic and outcomes of 31 Acute Myeloid leukemia (AML) and 9 Myelodysplastic syndromes (MDS) patients with TP53 mutation at our hospital from September 2015 to October 2020. A total of 42 variants (28 unique variants) in the coding region of TP53 gene were identified, and most were missense mutation (34 of 42, 81%). The median overall survival (OS) was 8 months for the AML patients (1-32 months) and 7 months for the MDS patients (3-27 months). There were 35 and 13 patients underwent frontline chemical therapy and Allo-HSCT, respectively. The overall response rate was 45.3% (16/35) for the frontline treatment. There was no significant difference between intensive and low-intensity regimens on either response to the frontline treatment (P = .255) or overall survival (P = .078). Patients, who achieved complete or partial remission at the frontline treatment, presented a higher survival than patients in non-remission, no matter transplant or not. This study corroborates that improving the response to the first-line treatment could prolong the survival of myeloid neoplasms patients with TP53 mutation. Allo-HSCT could be a curative option for patients with TP53 mutation, when in complete remission during the first-line treatment.
Publication Date: 2021-08-12
Journal: Clinical lymphoma, myeloma & leukemia

Factors associated with treatment response to CD19 CAR-T therapy among a large cohort of B cell acute lymphoblastic leukemia.
CD19-targeted chimeric antigen receptor (CAR) T cell therapy has demonstrated striking responses among B cell acute lymphoblastic leukemia (B-ALL), but analyses of potential factors associated with poor response and relapse are lacking. Here, we summarize the long-term follow-up of 254 B-ALL treated with CD19 CAR-T cells from 5 clinical trials (NCT03173417, NCT02546739, and NCT03671460 retrospectively registered on May 23, 2017, March 1, 2018, and September 7, 2018, respectively, at ; ChiCTR-ONC-17012829, and ChiCTR1800016541 retrospectively registered on September 28, 2017, and June 7, 2018, at ). Our data showed that TP53 mutation, bone marrow blasts > 20%, prior CAR-T/blinatumomab treatment, and severe cytokine release syndrome (CRS) were associated with a lower complete remission (CR) rate while age, extramedullary disease, complex cytogenetics, history of prior transplant, prior courses of chemotherapy, CAR-T cell dose, and manufacturing source of the cellular product did not affect patients' CR rate. Risk factors related to leukemia-free survival (LFS) and overall survival (OS) were history of prior transplant, complex cytogenetics, TP53 mutation, severe CRS, neurotoxicity, and CAR-T therapy without consolidative allogeneic hematopoietic stem cell transplantation (allo-HSCT). Age and CAR-T cell dose did not influence LFS and OS. Patients with consolidative allo-HSCT after CAR-T therapy had a superior OS and LFS compared to those who did not. This benefit was also observed in both pediatric and adult patients as well as in patients either in high- or low-risk groups. This large study to identify risk factors of CR, LFS, and OS may help to maximize clinical outcomes of CAR-T therapy. Précis TP53 mutation and BM blasts > 20% are two independent factors associated with the CR rate. Patients with high tumor burden as well as those with bone marrow blasts < 5% can benefit from consolidative allo-HSCT post-CAR-T therapy.
Publication Date: 2021-08-09
Journal: Cancer immunology, immunotherapy : CII

Development of TP53 mutations over the course of therapy for acute myeloid leukemia.
TP53 mutations in acute myeloid leukemia (AML) are associated with resistance to standard treatments and dismal outcomes. The incidence and prognostic impact of the emergence of newly detectable TP53 mutations over the course of AML therapy has not been well described. We retrospectively analyzed 200 patients with newly diagnosed TP53 wild type AML who relapsed after or were refractory to frontline therapy. Twenty-nine patients (15%) developed a newly detectable TP53 mutation in the context of relapsed/refractory disease. The median variant allelic frequency (VAF) was 15% (range, 1.1%-95.6%). TP53 mutations were more common after intensive therapy versus lower-intensity therapy (23% vs. 10%, respectively; p = 0.02) and in patients who had undergone hematopoietic stem cell transplant versus those who had not (36% vs. 12%, respectively; p = 0.005). Lower TP53 VAF was associated with an increased likelihood of complete remission (CR) or CR with incomplete hematologic recovery (CRi) compared to higher TP53 VAF (CR/CRi rate of 41% for VAF < 20% vs. 13% for VAF ≥ 20%, respectively). The median overall survival (OS) after acquisition of TP53 mutation was 4.6 months, with a 1-year OS rate of 19%. TP53 VAF at relapse was significantly associated with OS; the median OS of patients with TP53 VAF ≥ 20% was 3.5 months versus 6.1 months for those with TP53 VAF < 20% (p < 0.05). In summary, new TP53 mutations may be acquired throughout the course of AML therapy. Sequential monitoring for TP53 mutations is likely to be increasingly relevant in the era of emerging TP53-targeting therapies for AML.
Publication Date: 2021-08-06
Journal: American journal of hematology

Comprehensive Analysis of the Value of SMYD Family Members in the Prognosis and Immune Infiltration of Malignant Digestive System Tumors.
The SET and MYND domain-containing (SMYD) gene family comprises a set of genes encoding lysine methyltransferases. This study aimed to clarify the relationship between the expression levels of SMYD family members and the prognosis and immune infiltration of malignant tumors of the digestive system. The Oncomine, Ualcan, Kaplan-Meier Plotter, cBioPortal, Metascape, and TIMER databases and tools were used to analyze the correlation of SMYD family mRNA expression, clinical stage, TP53 mutation status, prognostic value, gene mutation, and immune infiltration in patients with esophageal carcinoma (ESCA), liver hepatocellular carcinoma (LIHC), and stomach adenocarcinoma (STAD). In ESCA, the mRNA expression of SMYD2/3/4/5 was significantly correlated with the incidence rate, that of SMYD2/3 with the clinical stage, that of SMYD2/3/4/5 with TP53 mutation status, that of SMYD2/4/5 with overall survival (OS), and that of SMYD1/2/3/4 with relapse-free survival (RFS). In LIHC, the mRNA expression of SMYD1/2/3/4/5 was significantly correlated with the incidence rate, that of SMYD2/4/5 with the clinical stage, that of SMYD3/5 with TP53 mutation status, that of SMYD2/3/4/5 with OS, and that of SMYD3/5 with RFS. In STAD, the mRNA expression of SMYD2/3/4/5 was significantly correlated with the incidence rate, that of SMYD1/4 with the clinical stage, that of SMYD1/2/3/5 with TP53 mutation status, that of SMYD1/3/4 with OS, and that of SMYD1/3 with RFS. Furthermore, the function of SMYD family mutation-related genes in ESCA, LIHC, and STAD patients was mainly related to pathways, such as mitochondrial gene expression, mitochondrial matrix, and mitochondrial translation. The expression of SMYD family genes was significantly correlated with the infiltration of six immune cell types and eight types of immune check sites. SMYD family genes are differentially expressed and frequently mutated in malignant tumors of the digestive system (ESCA, LIHC, and gastric cancer). They are potential markers for prognostic prediction and have important significance in immunity and targeted therapy.
Publication Date: 2021-08-03
Journal: Frontiers in genetics

Comment on "RAS/TP53 co-Mutation is Associated With Worse Survival after Concurrent Resection of Colorectal Liver Metastases and Extrahepatic Disease".
Publication Date: 2021-08-03
Journal: Annals of surgery

TP53 signature diagnostic system using multiplex reverse transcription-polymerase chain reaction system enables prediction of prognosis of breast cancer patients.
TP53 status based on TP53 signature, a gene expression profile to determine the presence or absence of TP53 mutation, is an independent prognostic factor of breast cancer. The purpose of this study was to develop a simple diagnostic system for TP53 signature status. We developed a multiplex reverse transcription-polymerase chain reaction system to determine TP53 status. Based on this system, prospectively collected 189 patients with stage I and II breast cancer were determined to have TP53 mutant signature or TP53 wild-type signature. The prognostic significance of the TP53 signature by the diagnostic system was analyzed. The diagnostic accuracy of TP53 status and reproducibility of this diagnosis system was confirmed. Using the diagnostic system, 89 patients were classified as TP53 mutant signature and the remaining 100 cases were classified as TP53 wild-type signature. Recurrence-free survival (RFS) among patients with TP53 mutant signature was significantly shorter than that among those with TP53 wild-type signature. On univariate and multivariate analyses, the TP53 signature status was an independent predictor of RFS. RFS among patients with TP53 mutant signature was significantly shorter than that among those with TP53 wild-type signature in a cohort of estrogen receptor-positive breast cancer. Although a difference was not significant, no recurrent cases was observed in TP53 wild-type signature group in triple negative breast cancer. This simple and precise diagnostic system to determine TP53 signature status may help in prognostic assessment, therapeutic decision-making, and treatment optimization in patients with breast cancer.
Publication Date: 2021-07-25
Journal: Breast cancer (Tokyo, Japan)

Bioinformatics Analysis of Neuroblastoma miRNA Based on GEO Data.
To analyze the changes in downstream genes, signaling pathways, and proteins based on the difference of microRNA (miRNA) expression in neuroblastoma (NB). GSE128004 second-generation sequencing expression data were downloaded from GEO, and Limma package of R language was used to analyze differential expression, and a volcano map and heat map were drawn; the target genes corresponding to the differential miRNA were found using the miWalk web tool, and GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) were performed. The key genes were identified and verified in the TCGA database. A total of 34 differentially expressed miRNAs were screened out. Among them, 22 up-regulated miRNAs predicted 1163 target genes and 12 down-regulated miRNAs predicted 1474 target genes. Target genes were enriched and analyzed by KEGG to find the FOXO signal pathway, mTOR signal pathway, AMPK signal pathway, and other signal pathways. After GO analysis, axon formation, regulation of chemical synaptic transmitters, regulation of nerve synapses, regulation of cross-synaptic signals, and other physiological processes were assessed. A total of 16 key genes were obtained by PPI analysis, and the survival analysis of TP53 and ATM genes verified in the TCGA database showed statistical significance. The 34 differential miRNAs may be related to the occurrence and development of NB. TP53 and ATM are related to the prognosis of NB. The role and mechanism of TP53 and ATM in NB need to be further verified.
Publication Date: 2021-07-22
Journal: Pharmacogenomics and personalized medicine

The genomic architectures of tumour-adjacent tissues, plasma and saliva reveal evolutionary underpinnings of relapse in head and neck squamous cell carcinoma.
Head and neck squamous cell carcinoma (HNSCC) is characterised by a dismal prognosis; nonetheless, limited studies have unveiled the mechanisms underlying HNSCC relapse. Next-generation sequencing was performed to identify the somatic mutations in 188 matched samples, including primary tumours, tumour-adjacent tissues (TATs), pre- and post-operative plasma, saliva and peripheral blood lymphocytes (PBLs) from 27 patients. The evolutionary relationship between TATs and tumours were analysed. The dynamic changes of tumour- and TAT-specific mutations in liquid biopsies were monitored together with survival analysis. Alterations were detected in 27 out of 27 and 19 out of 26 tumours and TATs, respectively. TP53 was the most prevalently mutated gene in TATs. Some TATs shared mutations with primary tumours, while some other TATs were evolutionarily unrelated to tumours. Notably, TP53 mutations in TATs are stringently associated with premalignant transformation and are indicative of worse survival (hazard ratio = 14.01). TAT-specific mutations were also detected in pre- and/or post-operative liquid biopsies and were indicative of disease relapse. TATs might undergo the processes of premalignant transformation, tumorigenesis and eventually relapse by either inheriting tumorigenic mutations from ancestral clones where the tumour originated or gaining private mutations independent of primary tumours. Detection of tumour- and/or TAT-specific genetic alterations in post-operative biopsies shows profound potential in prognostic use.
Publication Date: 2021-07-08
Journal: British journal of cancer

TP53 mutations in circulating tumor DNA in advanced epidermal growth factor receptor-mutant lung adenocarcinoma patients treated with gefitinib.
Tumor protein p53 (TP53) is a tumor suppressor gene and TP53 mutations are associated with poor prognosis in non-small cell lung cancer. However, the in-depth classification of TP53 and its relationship with treatment response and prognosis in epidermal growth factor receptor (EGFR)-mutant tumors treated with EGFR tyrosine kinase inhibitors are unclear. Circulating tumor DNA was prospectively collected at baseline in advanced treatment-naïve EGFR-mutant lung adenocarcinoma patients treated with gefitinib in an open-label, single-arm, prospective, multicenter, phase 2 clinical trial (BENEFIT trial) and analyzed using next-generation sequencing. Survival was estimated using the Kaplan-Meier method. Of the 180 enrolled patients, 115 (63.9%) harbored TP53 mutations. The median progression-free survival (PFS) and overall survival (OS) of patients with TP53-wild type tumors were significantly longer than those of patients with TP53-mutant tumors. Mutations in exons 5-8 accounted for 80.9% of TP53 mutations. Mutations in TP53 exons 6 and 7 were significantly associated with inferior PFS and OS compared to wild-type TP53. TP53 mutation also influenced the prognosis of patients with different EGFR mutations. Patients with TP53 and EGFR exon 19 mutations had significantly longer PFS and OS than patients with TP53 and EGFR L858R mutations, and both groups had worse survival than patients with only EGFR mutations. Patients with TP53 mutations, especially in exons 6 and 7, had a lower response rate and shorter PFS and OS when treated with gefitinib. Moreover, TP53 exon 5 mutation divided TP53 mutations in disruptive and non-disruptive types.
Publication Date: 2021-07-01
Journal: Translational oncology

The Phenomenon of Gene Rearrangement is Frequently Associated with TP53 Mutations and Poor Disease-Free Survival in Hepatocellular Carcinoma.
Gene rearrangements (GRs) have been reported to be related to adverse prognosis in some tumours, but the relationship in hepatocellular carcinoma (HCC) remains less studied. The objective of our study was to explore the clinicopathological characteristics and prognosis of HCC patients (HCCs) with GRs (GR-HCCs). This retrospective study included 297 HCCs who underwent hepatectomy and had their tumours sequenced by next-generation sequencing. Categorical variables between groups were compared by the chi-square test. The impact of variables on disease-free survival (DFS) and survival after relapse (SAR) was analysed by the Kaplan-Meier method and Cox regression. We observed four repetitive GR events in 297 HCCs: BRD9/TERT, ARID2/intergenic, CDKN2A/intergenic and OBSCN truncation. GR-HCCs frequently presented with low tumour differentiation, tumour necrosis, microvascular invasion, elevated AFP and gene mutations (TP53, NTRK3 and BRD9). The 1-, 2-, and 3-year cumulative DFS rates in GR-HCCs were 45.1%, 31.9%, 31.9%, respectively, which were significantly lower than those of GR-negative HCCs (NGR-HCCs) (72.5%, 57.9%, and 49.0%, respectively; GR is frequently associated with TP53 mutations and significantly affects DFS following radical resection for HCC. We recommend that GR-HCCs should be closely followed up as a high-risk group for postoperative recurrence.
Publication Date: 2021-07-01
Journal: Pharmacogenomics and personalized medicine

Multivariate transcriptome analysis identifies networks and key drivers of chronic lymphocytic leukemia relapse risk and patient survival.
Chronic lymphocytic leukemia (CLL) is an indolent heme malignancy characterized by the accumulation of CD5 Networks were investigated by using a novel weighted gene network co-expression analysis method and examining overrepresentation of upstream regulators and signaling pathways within co-expressed transcriptome modules across clinically annotated transcriptomes from CLL patients (N = 203). Gene Ontology analysis was used to identify biological functions overrepresented in each module. Differential Expression of modules and individual genes was assessed using an ANOVA (Binet Stage A and B relapsed patients) or T-test (SF3B1 mutations). The clinical relevance of biomarker candidates was evaluated using log-rank Kaplan Meier (survival and relapse interval) and ROC tests. Eight distinct modules (M2, M3, M4, M7, M9, M10, M11, M13) were significantly correlated with relapse and differentially expressed between relapsed and non-relapsed Binet Stage A CLL patients. The biological functions of modules positively correlated with relapse were carbohydrate and mRNA metabolism, whereas negatively correlated modules to relapse were protein translation associated. Additionally, M1, M3, M7, and M13 modules negatively correlated with overall survival. CLL biomarkers BTK, BCL2, and TP53 were co-expressed, while unmutated IGHV biomarker ZAP70 and cell survival-associated NOTCH1 were co-expressed in modules positively correlated with relapse and negatively correlated with survival days. This study provides novel insights into CLL relapse biology and pathways associated with known and novel biomarkers for relapse and overall survival. The modules associated with relapse and overall survival represented both known and novel pathways associated with CLL pathogenesis and can be a resource for the CLL research community. The hub genes of these modules, e.g., ARHGAP27P2, C1S, CASC2, CLEC3B, CRY1, CXCR5, FUT5, MID1IP1, and URAHP, can be studied further as new therapeutic targets or clinical markers to predict CLL patient outcomes.
Publication Date: 2021-07-01
Journal: BMC medical genomics

Circulating tumour DNA reveals genetic traits of patients with intraductal carcinoma of the prostate.
To investigate the genetic alterations of patients with prostate cancer (PCa) with and without intraductal carcinoma of the prostate (IDC-P). We performed targeted sequencing of plasma cell-free DNA on 161 patients with prostate adenocarcinoma (PAC) with IDC-P and 84 without IDC-P. Genomic alterations were compared between these two groups. The association between genetic alterations and patients' survival outcomes was also explored. We identified that 29.8% (48/161) and 21.4% (18/84) of patients with and without IDC-P harboured genomic alterations in DNA repair pathways, respectively (P = 0.210). Pathogenic germline DNA repair alterations were frequently detected in IDC-P carriers compared to IDC-P non-carriers (11.8% [19/161] vs 2.4% [two of 84], P = 0.024). Germline BReast CAncer type 2 susceptibility protein (BRCA2) and somatic cyclin-dependent kinase 12 (CDK12) defects were specifically identified in IDC-P carriers relative to PAC (BRCA2: 8.7% [14/161] vs 0% and CDK12: 6.8% [11/161] vs 1.2% [one of 84]). Patients with IDC-P had a distinct androgen receptor (AR) pathway alteration, characterised by an enrichment of nuclear receptor corepressor 2 (NCOR2) mutations compared with patients with pure PAC (21.1% [34/161] vs 6.0% [five of 84], P = 0.004). Increased AR alterations were detected in patients harbouring tumours with an IDC-P proportion of ≥10% vs those with an IDC-P proportion of <10% (6.4% [five of 78] vs 18.1% [15/83], P = 0.045). For IDC-P carriers, tumour protein p53 (TP53) mutation was associated with shorter castration-resistant-free survival (median 10.9 vs 28.9 months, P = 0.026), and BRCA2 alteration was related to rapid prostate-specific antigen progression for those receiving abiraterone treatment (median 9.1 vs 11.9 months, P = 0.036). Our findings provide genomic evidence explaining the aggressive phenotype of tumours with IDC-P, highlighting the potential therapeutic strategies for this patient population.
Publication Date: 2021-06-30
Journal: BJU international

Going beneath the tip of the iceberg. Identifying and understanding EML4-ALK variants and TP53 mutations to optimize treatment of ALK fusion positive (ALK+) NSCLC.
Since the discovery of echinoderm microtubule-associated protein-like 4 (EML4) and anaplastic lymphoma kinase (ALK) gene fusion in non-small cell lung carcinoma (NSCLC) in 2007, more than 10 EML4-ALK variants based on the exon breakpoints in EML4 have been identified. Unlike other receptor tyrosine kinase fusion positive NSCLC such as ROS1 or RET fusion, EML4-ALK is the dominant fusion variant in ALK+ NSCLC accounting for approximately 85 % of all fusion variants in ALK+ NSCLC. Currently, eight EML4-ALK variants are generally recognized with a number (1, 2, 3a/b, 4', 5a/b, 5', 7, 8) with EML4-ALK variants 1 and 3 being the two most common variants accounting for 75-80 % of the total EML4-ALK variants. Preclinical, retrospective analyses of institutional databases, and global randomized phase 3 trials have demonstrated differential clinical response (overall response rate, progression-free survival) to ALK tyrosine kinase inhibitors (TKIs) between the "short" (v3 and v5) and "long" (v1, v2, v5', v7, and v8) EML4-ALK variants. We discuss in more details how EML4-ALK variant structure influences protein stability and response to ALK TKIs. Additionally, the most recalcitrant single solvent-front mutation ALK G1202R is more prone to develop among EML4-ALK v3 following sequential use of next-generation ALK TKIs. Furthermore, TP53 mutations being the most common genomic co-alterations in ALK+ NSCLC also contribute to the heterogeneous response to ALK TKIs. Recognizing ALK+ NSCLC is not one homogeneous disease entity but comprised of different ALK fusion variants with different underlying genomic alterations in particular TP53 mutations that modulate treatment response will provide insight into the further optimization of treatment of ALK+ NSCLC patients potentially leading to improvement in survival.
Publication Date: 2021-06-28
Journal: Lung cancer (Amsterdam, Netherlands)

Assessment of Significant Pathway Signaling and Prognostic Value of GNG11 in Ovarian Serous Cystadenocarcinoma.
GNG11 (G protein subunit gamma 11) is a member of guanine nucleotide-binding protein (G protein) gamma family. Few studies elucidated the role of GNG11 in human disease, especially in tumors. The present study initially analyzed the function of GNG11 in ovarian serous cystadenocarcinoma. The differential expression of GNG11 mRNA in ovarian cancer and normal tissues was evaluated through Oncomine, CCLE, Gepia, UCSC Xena and UALCAN databases. The protein expression of GNG11 was assessed via HPA database. Prognosis analysis was performed by Kaplan-Meier Plotter. Restrict survival analysis to subtypes including tumor grade, cancer stage and TP53 mutation status was then carried out. GSEA enrichment analysis was performed to explore the significant pathways associated with GNG11 in ovarian cancer. Finally, the upstream miRNAs of GNG11 were predicted by DIANA, Target Scan, miRDB and miRWalk databases, and the potential key KEGG pathways were subsequently determined by DIANA. The mRNA expression of GNG11 was down-regulated in ovarian cancer patients ( High expression of GNG11 indicated the poor prognosis of ovarian cancer patients. GNG11 might play a crucial role in the biological process of ovarian serous cystadenocarcinoma by ECM-receptor interaction pathway, thus affecting the prognosis of patients.
Publication Date: 2021-06-12
Journal: International journal of general medicine

Genomic Sequencing and Insight into Clinical Heterogeneity and Prognostic Pathway Genes in Patients with Metastatic Colorectal Cancer.
An understanding of signaling pathways has not been fully incorporated into prognostication and therapeutic options. We evaluated the hypothesis that information about cancer-related signaling pathways can improve prognostic stratification and explain some of the clinical heterogeneity in patients with metastatic colorectal cancer. We analyzed prognostic relevance of signaling pathways in patients undergoing resection of colorectal liver metastases (CLM) from 2004-2017, and clinical actionability of gene alterations in 7 signaling pathways: p53, Wnt, RTK-RAS, PI3K, TGFβ, Notch, and cell cycle. To assess the wide applicability, the results were validated in an external retrospective cohort including patients with unresectable metastatic colorectal cancer. Of 579 patients, the numbers of patients with pathway alterations were as follows: p53, n = 420 (72.5%); Wnt, 340 (58.7%); RTK-RAS, 333 (57.5%); PI3K, 110 (19.0%); TGFβ, 65 (11.2%); Notch, 41 (7.1%); and cell cycle, 15 (2.6%). More than 80% of alterations in each pathway occurred in a single predominant gene TP53, APC, KRAS, PIK3CA, FBXW7, and RB1 in p53, Wnt, RTK-RAS, PI3K, Notch, and cell cycle pathways, respectively. Alterations of 4 pathways (p53, RTK-RAS, TGFβ, and Notch) and corresponding predominant genes (TP53, RAS/BRAF, SMAD4, and FBXW7) were significantly associated with worse overall survival (OS), and alterations of Wnt pathway (APC) were associated with better OS in the median follow-up duration of 3.8 years. Similarly, in the external cohort, alterations of p53 (TP53) and RTK-RAS (RAS/BRAF) were significantly associated with worse OS, whereas alteration of Wnt (APC) was associated with better OS in the median follow-up duration of 2.6 years. Genomic sequencing provides insights into clinical heterogeneity and permits finer prognostic stratification in patients with metastatic colorectal cancer.
Publication Date: 2021-06-11
Journal: Journal of the American College of Surgeons

The synergy of BET inhibitors with aurora A kinase inhibitors in MYCN-amplified neuroblastoma is heightened with functional TP53.
Amplification of MYCN is a poor prognostic feature in neuroblastoma (NBL) indicating aggressive disease. We and others have shown BET bromodomain inhibitors (BETi) target MYCN indirectly by downregulating its transcription. Here we sought to identify agents that synergize with BETi and to identify biomarkers of resistance. We previously performed a viability screen of ∼1,900 oncology-focused compounds combined with BET bromodomain inhibitors against MYCN-amplified NBL cell lines. Reanalysis of our screening results prominently identified inhibitors of aurora kinase A (AURKAi) to be highly synergistic with BETi. We confirmed the anti-proliferative effects of several BETi+AURKAi combinations in MYCN-amplified NBL cell lines. Compared to single agents, these combinations cooperated to decrease levels of N-myc. We treated both TP53-wild type and mutant, MYCN-amplified cell lines with the BETi JQ1 and the AURKAi Alisertib. The combination had improved efficacy in the TP53-WT context, notably driving apoptosis in both genetic backgrounds. JQ1+Alisertib combination treatment of a MYCN-amplified, TP53-null or TP53-restored genetically engineered mouse model of NBL prolonged survival better than either single agent. This was most profound with TP53 restored, with marked tumor shrinkage and apoptosis induction in response to combination JQ1+Alisertib. BETi+AURKAi in MYCN-amplified NBL, particularly in the context of functional TP53, provided anti-tumor benefits in preclinical models. This combination should be studied more closely in a pediatric clinical trial.
Publication Date: 2021-06-10
Journal: Neoplasia (New York, N.Y.)

tp53 gene(35)


survival os(33)



95 ci(31)




p53 tp53(29)

mutated genes(29)


frequently mutated(28)


tumor suppressor(27)




tp53 mutation status(22)


breast cancer(22)

progression-free survival(22)

mutated gene(22)

p 0 05(20)



p 0 001(19)



mutational status(19)

somatic mutations(19)


hazard ratio(16)


cancer genome atlas(15)

p 001(13)


genes tp53(11)

frequently mutated genes(11)

p 0 01(10)

months p(9)

receptor egfr(9)

squamous cell carcinoma(9)

survival p(8)

tp53 p(8)




p 0 02(7)

os hr(7)

p 0 003(6)

del 11q(6)

p 0 0001(6)

p 02(6)

p 0 007(5)

p 0 016(5)

mutations p(5)

months 95(4)

apc kras(4)

respectively p(4)

p 0 026(4)

9 7(3)

36 7(3)

33 3(3)

3 25 12 0(2)

kras braf(2)

p 0 000(1)

6 58(1)

10 01-10 03 p(1)

dnmt3a jak2(1)

tp53 c(1)

pik3ca fat4(1)