pubmed > NFKB > tumor necrosis factor

Two reactive behaviors of chondrocytes in an IL-1β-induced inflammatory environment revealed by the single-cell RNA sequencing.
To investigate the heterogeneous responses of Human articular chondrocytes were expanded, Two major cell clusters with distinct expression patterns were identified at the initial phase and were with heterogeneous variation that coincides with inflammation progress. They transformed into two terminal cell clusters one of which exhibited OA-phenotype and proinflammatory characteristics through two paths, "response-to-inflammation" and "atypical response-to-inflammation", respectively. The involved cell clusters exhibited intrinsic relationship with cell types within native cartilage from OA patients. Genes controlling cell transformation to OA-phenotype were relating to the tumor necrosis factor (TNF) signaling pathway via NFKB, up-regulated KRAS signaling and the IL2/STAT5 signaling pathway and pathways relating to apoptosis and reactive oxygen species. The
Publication Date: 2021-04-22
Journal: Aging

Fish oil attenuated dystrophic muscle markers of inflammation via FFA1 and FFA4 in the mdx mouse model of DMD.
In the present study we investigated the involvement of free fatty acid (FFA) receptors in the anti-inflammatory role of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in dystrophic muscles, by administering FFA blockers in the mdx mouse model of dystrophy. Mdx mice (3 months-old) were treated with fish oil capsules (FDC Vitamins; 0.4 g EPA and 0.2 g DHA; gavage) alone or concomitant to FFA1 and FFA4 blockers (GW1100 and AH7614; i.p.). C57BL/10 mice (3 months-old) and untreated-mdx mice received mineral oil and were used as controls. After 1 month of treatment, plasma markers of myonecrosis (total and cardiac creatine kinase; CK), the levels of FFA1 and FFA4 and of the markers of inflammation, nuclear transcription factor kappa B (NFkB), tumor necrosis factor alpha (TNF-α) and interleukin 1β (IL-1β) were analyzed in the diaphragm muscle and heart by western blot. Fish oil significantly reduced total CK, cardiac CK and the levels of NFkB (diaphragm), and of TNF-α and IL-1β (diaphragm and heart) in mdx. In the dystrophic diaphragm, FFA1 was increased compared to normal. Blockers of FFA1 and FFA4 significantly inhibited the effects of fish oil treatment in both dystrophic muscles. The anti-inflammatory effects of fish oil in dystrophic diaphragm muscle and heart were mediated through FFA1 and FFA4. No presente estudo investigamos o envolvimento de receptores de ácidos graxos livres (FFA) no efeito anti-inflamatório dos ácidos eicosapentaenoico (EPA) e docosahexaenoico (DHA) em músculos distróficos, administrando bloqueadores de FFA no camundongo mdx, modelo de distrofia. Camundongos mdx (3 meses de idade) foram tratados com cápsulas de óleo de peixe (FDC Vitamins; 0.4 g EPA e 0.2 g DHA; gavagem) ou com cápsulas de óleo de peixe concomitante a bloqueadores de FFA1 e FFA4 (GW1100 e AH7614; i.p.). Camundongos C57BL/10 (3 meses de idade) e camundongos mdx não tratados receberam óleo mineral e serviram de controle. Após 1 mês de tratamento, marcadores plasmáticos de mionecrose (creatina quinase total e cardíaca; CK), os níveis de FFA1 e FFA4 e dos marcadores de inflamação fator de transcrição nuclear kappa B (NFkB, nuclear transcription factor kappa B), fator de necrose tumoral alpha (TNF-α, tumor necrosis factor alpha) e interleucina 1β (IL-1β) foram analisados no músculo diafragma e no coração através de western blot. O óleo de peixe reduziu de forma significativa a CK total, CK cardíaca e os níveis de NFkB (diafragma), TNF-α e IL-1β (diafragma e coração) no mdx. No diafragma distrófico, FFA1 estava aumentado comparado ao normal. Os bloqueadores de FFA1 e FFA4 inibiram de forma significativa os efeitos do tratamento com óleo de peixe em ambos músculos distróficos. Os efeitos anti-inflamatórios do óleo de peixe nos músculos distróficos diafragma e cardíaco foram mediados por FFA1 e FFA4.
Publication Date: 2020-11-03
Journal: Anatomical record (Hoboken, N.J. : 2007)

Magnesium acetyltaurate protects against endothelin-1 induced RGC loss by reducing neuroinflammation in Sprague dawley rats.
Endothelin-1 (ET-1), a potent vasoconstrictor, plays a significant role in the pathophysiology of ocular conditions like glaucoma. Glaucoma is characterized by apoptotic loss of retinal ganglion cells (RGCs) and loss of visual fields and is a leading cause of irreversible blindness. In glaucomatous eyes, retinal ischemia causes release of pro-inflammatory mediators such as interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α and promotes activation of transcription factors such as nuclear factor kappa B (NFKB) and c-Jun. Magnesium acetyltaurate (MgAT) has previously been shown to protect against ET-1 induced retinal and optic nerve damage. Current study investigated the mechanisms underlying these effects of MgAT, which so far remain unknown. Sprague dawley rats were intravitreally injected with ET-1 with or without pretreatment with MgAT. Seven days post-injection, retinal expression of IL-1β, IL-6, TNF-α, NFKB and c-Jun protein and genes was determined using multiplex assay, Western blot and PCR. Animals were subjected to retrograde labeling of RGCs to determine the extent of RGC survival. RGC survival was also examined using Brn3A staining. Furthermore, visual functions of rats were determined using Morris water maze. It was observed that pre-treatment with MgAT protects against ET-1 induced increase in the retinal expression of IL-1β, IL-6 and TNF-α proteins and genes. It also protected against ET-1 induced activation of NFKB and c-Jun. These effects of MgAT were associated with greater RGC survival and preservation of visual functions in rats. In conclusion, MgAT prevents ET-1 induced RGC loss and loss of visual functions by suppressing neuroinflammatory reaction in rat retinas.
Publication Date: 2020-03-12
Journal: Experimental eye research

Anti-angiogenic effects of mangiferin and mechanism of action in metastatic melanoma.
Advanced metastatic melanoma, one of the most aggressive skin malignancies, is currently without reliable therapy. The process of angiogenesis is crucial for progression and metastasis of the majority of solid tumors including melanomas. Therefore, new therapies are urgently needed. Mangiferin is a naturally occurring glucosylxanthone which exerts many pharmacological activities against cancer-inflammation. However, the effect of mangiferin on metastasis and tumor growth of metastatic melanoma remains unclear. In this study, we demonstrate that mangiferin interferes with inflammation, lipid and calcium signaling which selectively inhibits multiple NFkB target genes including interleukin-6, tumor necrosis factor, interferon gamma, vascular endothelial growth factor receptor 2, plasminogen activator urokinase, matrix metalloprotease 19, C-C Motif Chemokine Ligand 2 and placental growth factor. This abrogates angiogenic and invasive processes and capillary tube formation of metastatic melanoma cells as well as human placental blood vessel explants in-vitro and blocks angiogenesis characteristic of the chicken egg chorioallantoic membrane assay and in melanoma syngeneic studies in vivo. The results obtained in this research illustrate promising anti-angiogenic effects of the natural glucosylxanthone mangiferin for further (pre)clinical studies in melanoma cancer patients.
Publication Date: 2019-10-28
Journal: Melanoma research

Effects of restraint stress on the regulation of hippocampal glutamate receptor and inflammation genes in female C57BL/6 and BALB/c mice.
The two strains of inbred mice, BALB/c and C57BL/6, are widely used in pre-clinical psychiatry research due to their differences in stress susceptibility. Gene profiling studies in these strains have implicated the inflammation pathway as the main contributor to these differences. We focused our attention on female mice and tested their response to 5- or 10-day exposure to restraint stress. We examined the stress induced changes in the regulation of 11 inflammatory cytokine genes and 12 glutamate receptor genes in the hippocampus of female BALB/c and C57BL/6 mice using quantitative PCR. Elevated proinflammatory cytokine genes include Tumor Necrosis Factor alpha (TNFa), nuclear factor kappa-light-chain-enhancer of activated B cells (NFKB), Interleukin 1 alpha (IL1a), Interleukin 1 receptor (IL1R), Interleukin 10 receptor alpha subunit (IL10Ra), Interleukin 10 receptor beta subunit (IL10Rb), and tumor necrosis factor (TNF) super family members. Our results show that BALB/c and C57BL/6 mice differ in the genes induced in response to stress exposure and the level of gene regulation change. Our results show that the gene regulation in female BALB/c and C57BL/6 mice differs between strains in the genes regulated and the magnitude of the changes.
Publication Date: 2019-06-14
Journal: Neurobiology of stress

The effects of lycopene on alloxan induced diabetic optic neuropathy.
To determine the effects of lycopene treatment in prevention of diabetes associated inflammatory response and oxidative stress in an experimental model. With this aim we investigated the levels of oxidative stress markers including Malondialdehyde (MDA), and total oxidative status (TOS)together with inflammatory markers including nuclear factor- kappa B (NFKB) and tumor necrosis factor α (TNF-α) and antioxidants including total glutathione (TGSH), total oxidative status (TOS) and total anti-oxidative status (TAS) levels on eye tissue. Totally 18 albino Wistar male rats (250-280 grams) assigned into three groups, with six rats in each group as follows: healthy group (HG), control group (CG), and lycopene group (LG). The diabetes was induced with alloxan administration in rats of CG and LG. Lycopene (4 mg/kg) was administered to the rats in LG once a day for 3 months. At the end of this period, the animals were sacrificed and their eyes were enucleated for histopathological evaluations. From the tissues, MDA, GSH, TOS, TAS, TNF-α and NF-κB levels were analyzed. MDA, TOS, OSI, NFKB and TNF-α levels were significantly higher, while TGSH and TAS levels were significantly lower in CG compared with HG (p < 0.001). On the other hand in LG; MDA, TOS, OSI, NFKB and TNF-α levels were significantly lower, while TGSH and TAS levels were significantly higher compared with CG (p < 0.001). Regarding histopathological findings, although there was severe damage on optic nerve of rats in CG; there was only a slight damage in lycopene administered group. For the first time in literature we determined that, lycopene was significantly effective in prevention of augmented inflammation and oxidative stress on eye tissue associated with diabetes, as well as the tissue damage on optic nerve. However, studies investigating the long-term clinical effects of lycopene on diabetic individuals are warranted.
Publication Date: 2018-10-03
Journal: Cutaneous and ocular toxicology

Calpain inhibition decreases inflammatory protein expression in vessel walls in a model of chronic myocardial ischemia.
Emerging data suggest a link between calpain activation and the enhanced inflammatory response of the cardiovascular system. We hypothesize that calpain activation associates with altered inflammatory protein expression in correlation with the proinflammatory profile of the myocardium. Our pig hypercholesterolemic model with chronic myocardial ischemia was treated with calpain inhibitors to establish their potential to improve cardiac function. Yorkshire swine, fed a high cholesterol diet for 4 weeks then underwent placement of an ameroid constrictor on the left circumflex artery. Two weeks later, animals received either no drug (high-cholesterol control group, n = 8), a low dose of calpain inhibitors (0.12 mg/kg, n = 9), or a high dose of calpain inhibitors (0.25 mg/kg; n = 8). The high-cholesterol diet and calpain inhibitors were continued for 5 weeks, after which the pig was euthanized. The left ventricular myocardial tissue (ischemic and nonischemic) was harvested and analyzed for inflammatory protein expression. Data were statistically analyzed via the Kruskal-Wallis and Dunn post hoc test. Calpain inhibitor treatment coincides with increased expression of IKB-α and decreased expression of macrophages, NFkB, IL-1, and tumor necrosis factor (TNF)-α in the ischemic myocardial tissue as compared with the control group. An NFkB array revealed decreased expression of IRF5, JNK1/2, JNK2, CD18, NFkB p65, c-Rel, Sharpin, TNF R1, TNF R2, and DR5 in the ischemic myocardium of the group treated with a high dose of calpain inhibitors compared with the control. Calpain activation in metabolic syndrome is a potential contributor to cardiac dysfunction in metabolic disorders with ischemic background. We suggest that calpain inhibition downregulates NFkB signaling in the vessel walls, which might be useful for improving myocardial blood flow in ischemic conditions.
Publication Date: 2016-12-28
Journal: Surgery

Comparative Analyses of Immunosuppressive Characteristics of Bone-Marrow, Wharton's Jelly, and Adipose Tissue-Derived Human Mesenchymal Stem Cells.
Mesenchymal stem cells (MSCs), which possess immunosuppressive characteristics on induced T-cells, were shown to be applicable in prevention and treatment of graft-versus-host disease. However, knowledge of effective cell sources is still limited. In this study, MSCs from different human tissues, i.e. bone marrow (BM), Wharton's jelly (WJ), and adipose tissue, were isolated, and the immune suppression of stimulated T cells was analyzed comparatively. MSCs were co-cultured with phytohemagglutinin-induced T-cells with co-culture techniques with and without cell-to-cell contact. After co-culture for 24 and 96 h, the proliferation rate of T cells was estimated by carboxyfluorescein succinimidyl ester and apoptosis by annexin V/PI methods. Both T cells and MSCs were analyzed with respect to gene expressions by real-time polymerase chain reaction and their specific protein levels by ELISA. The results showed that all three MSC lines significantly suppressed T-cell proliferation; BM-MSCs were most effective. Similarly, T-cell apoptosis was induced most strongly by BM-MSCs in indirect culture. In T cells, the genes in NFkB and tumor necrosis factor pathways were silenced and the caspase pathway was induced after co-culture. These results were confirmed with the measurement of protein levels, like transforming growth factor β1, IL-6, interferon-γ, interleukin (IL)-2, and tumor necrosis factor-α. Additionally, IL-17A was detected in high levels in WJ-MSC co-cultures. We showed that IL-17A-producing Tregs are the key mediators in the treatment of graft-versus-host disease. BM-MSCs, which have been used in clinical applications for a while, showed the greatest immunosuppressive effect compared to other MSCs. However, a promising cell source could also be WJ, which is also effective in suppression with fewer ethical concerns. We described the molecular mechanism of WJ-MSCs in allogenic transplants for the first time. Amaç: Mezenkimal kök hücreler (MKH), uyarılmış T hücreler üzerinde sahip oldukları bağışıklık baskılayıcı özellikleri nedeniyle günümüzde graft versus host hastalığının önlenmesi veya tedavisi amacıyla kullanılmaya başlanmıştır. Kemik iliği kaynaklı MKH’lerin yanında, farklı insan kaynaklı dokulardan elde edilen MKH’lerin de benzer özelliklere sahip olduğunu bildiren raporlar yayımlanmaya başlamıştır. Bu araştırmada, günümüzde yenileyici tıp amaçlı en çok çalışılan kaynaklar olan kemik iliği (Kİ), göbek bağı (GB) ve adipoz doku kaynaklı MKH’lerin, insan uyarılmış T hücreleri üzerine olası bağışık baskılayıcı (immünsüpressif) özelliklerini karşılaştırılmalı olarak incelenmesi amaçlandı. Gereç ve Yöntemler: Uygun yöntemler kullanılarak izole edilen insan Kİ, adipoz doku- ve GB- tohemagglutinin ile uyarılmış T hücreler hücre-hücre etkileşimi veya parakrin etkiyi gözlemlenebilecek ko-kültürler tasarlandı. Yirmi dört ve 96 saatlik ko-kültürlerin ardından, T hücre çoğalımının tespiti için karboksiflüoresein süksinimidil ester ve apoptoza yönelimi tespit için ise anneksin V/PI yöntemleri kullanıldı. Hem T hücreler hem de MKH’ler gen anlatım düzeylerini değerlendirebilmek için real-time polimeraz zincir reaksiyonu ve belirli protein seviyelerin tespiti için de ELİSA yöntemleriyle analiz edildiler. Bulgular: Bulgularımız, üç farklı kaynaktan elde ettiğimiz insan MKH’lerin içinde uyarılmış T-hücreler üzerinde hem doğrudan temas yoluyla hem de parakrin etki mekanizmalarıyla hücre çoğalımını baskılamada ve apoptoza yönlendirmede en etkili Kİ-MKH’ler olduğunu göstermiştir. Bu bulgular, transforme edici büyüme faktörü (TGF)-β, interlökin (IL)-6 , interferon (IF)-γ , interlökin 2 ve tümör nekroz faktörü (TNF)-α proteinlerinin ölçümüyle de doğrulanmıştır. Bu bulgulara ek olarak GB-MKH ko-kültürlerinde IL-17A’nın arttığını ve bu sistemde IL-17A üreten Treglerin graft versus host hastalığının tedavide rol aldığını gösterdik. Sonuç: Klinikte kullanılan Kİ-MKH’lerin en etkin bağışıklık baskılayıcı etki gösterdiğini çeşitli kaynaklardan elde ettiğimiz MKH’ler ile karşılaştırarak gösterdik. Ayrıca, GB-MKH’lerin allojenik kullanımlarda altında yatan moleküler mekanizmasını ilk biz göstermiş olduk. Çalışmalarımız sonucunda kullanımında bir etik kaygı içermeyen umut vaat edici kaynak olarak, GB’yi görüyoruz.
Publication Date: 2016-09-10
Journal: Turkish journal of haematology : official journal of Turkish Society of Haematology

Anti-aging effects of guanosine in glial cells.
Guanosine, a guanine-based purine, has been shown to exert beneficial roles in in vitro and in vivo injury models of neural cells. Guanosine is released from astrocytes and modulates important astroglial functions, including glutamatergic metabolism, antioxidant, and anti-inflammatory activities. Astrocytes are crucial for regulating the neurotransmitter system and synaptic information processes, ionic homeostasis, energy metabolism, antioxidant defenses, and the inflammatory response. Aging is a natural process that induces numerous changes in the astrocyte functionality. Thus, the search for molecules able to reduce the glial dysfunction associated with aging may represent an approach for avoiding the onset of age-related neurological diseases. Hence, the aim of this study was to evaluate the anti-aging effects of guanosine, using primary astrocyte cultures from newborn, adult, and aged Wistar rats. Concomitantly, we evaluated the role of heme oxygenase 1 (HO-1) in guanosine-mediated glioprotection. We observed age-dependent changes in glutamate uptake, glutamine synthetase (GS) activity, the glutathione (GSH) system, pro-inflammatory cytokine (tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β)) release, and the transcriptional activity of nuclear factor kB (NFkB), which were prevented by guanosine in an HO-1-dependent manner. Our findings suggest guanosine to be a promising therapeutic agent able to provide glioprotection during the aging process. Thus, this study contributes to the understanding of the cellular and molecular mechanisms of guanosine in the aging process.
Publication Date: 2016-09-03
Journal: Purinergic signalling

Allelic mutations in noncoding genomic sequences construct novel transcription factor binding sites that promote gene overexpression.
The growth and survival factor hepatocyte growth factor (HGF) is expressed at high levels in multiple myeloma (MM) cells. We report here that elevated HGF transcription in MM was traced to DNA mutations in the promoter alleles of HGF. Sequence analysis revealed a previously undiscovered single-nucleotide polymorphism (SNP) and crucial single-nucleotide variants (SNVs) in the promoters of myeloma cells that produce large amounts of HGF. The allele-specific mutations functionally reassembled wild-type sequences into the motifs that affiliate with endogenous transcription factors NFKB (nuclear factor kappa-B), MZF1 (myeloid zinc finger 1), and NRF-2 (nuclear factor erythroid 2-related factor 2). In vitro, a mutant allele that gained novel NFKB-binding sites directly responded to transcriptional signaling induced by tumor necrosis factor alpha (TNFα) to promote high levels of luciferase reporter. Given the recent discovery by genome-wide sequencing (GWS) of numerous non-coding mutations in myeloma genomes, our data provide evidence that heterogeneous SNVs in the gene regulatory regions may frequently transform wild-type alleles into novel transcription factor binding properties to aberrantly interact with dysregulated transcriptional signals in MM and other cancer cells.
Publication Date: 2015-07-30
Journal: Genes, chromosomes & cancer

Adiponectin secreted by tubular renal cells during LPS exposure worsens the cellular inflammatory damage.
The pathogenetic role of adiponectin (ADPN) in kidney failure is not yet elucidated, since in vitro and in vivo studies have demonstrated that ADPN exerts both anti-inflammatory and pro-inflammatory effects. Starting from our previous findings demonstrating that HK-2 cells express and secrete ADPN, in this study we investigated the autocrine role of ADPN in tubular inflammatory damage induced by lipopolysaccharide (LPS) and the underlying molecular mechanisms. Firstly, we observed that short-term exposure to LPS enhanced ADPN protein expression as well as the adiponectin receptor ADIPOR1 mRNA content together with its signaling pathway downstream, pAMPK/pERK/pJNK, whose up-regulation status was reversed when ADPN gene knockdown occurred. Interestingly, in the same experimental conditions, we observed that ADPN mediated the nuclear translocation of the transcription factors nuclear factor kappa B (NFkB) and pcFos/pcJun (activator protein 1, AP-1), both induced by the pJNK pathway and involved in tumor necrosis factor (TNF)-α transactivation. Indeed, by transient transfection assay, we observed that the LPS-induced increase of TNF-α promoter activity was abrogated in cells pretreated with the inhibitors of NFkB and AP-1. Collectively our results suggest that in HK-2 cells, ADPN produced upon LPS stimulus could worsen the inflammatory damage in an autocrine-dependent manner.
Publication Date: 2015-07-29
Journal: Journal of nephrology

Melatonin attenuates the TLR4-mediated inflammatory response through MyD88- and TRIF-dependent signaling pathways in an in vivo model of ovarian cancer.
Toll-like receptors (TLRs) are effector molecules expressed on the surface of ovarian cancer (OC) cells, but the functions of the TLR2/TLR4 signaling pathways in these cells remain unclear. Melatonin (mel) acts as an anti-inflammatory factor and has been reported to modulate TLRs in some aggressive tumor cell types. Therefore, we investigated OC and the effect of long-term mel therapy on the signaling pathways mediated by TLR2 and TLR4 via myeloid differentiation factor 88 (MyD88) and toll-like receptor-associated activator of interferon (TRIF) in an ethanol-preferring rat model. To induce OC, the left ovary of animals either consuming 10% (v/v) ethanol or not was injected directly under the bursa with a single dose of 100 μg of 7,12-dimethylbenz(a)anthracene (DMBA) dissolved in 10 μL of sesame oil. The right ovaries were used as sham-surgery controls. After developing OC, half of the animals received i.p. injections of mel (200 μg/100 g b.w./day) for 60 days. Although mel therapy was unable to reduce TLR2 levels, it was able to suppress the OC-associated increase in the levels of the following proteins: TLR4, MyD88, nuclear factor kappa B (NFkB p65), inhibitor of NFkB alpha (IkBα), IkB kinase alpha (IKK-α), TNF receptor-associated factor 6 (TRAF6), TRIF, interferon regulatory factor 3 (IRF3), interferon β (IFN-β), tumor necrosis factor alpha (TNF-α), and interleukin (IL)-6. In addition, mel significantly attenuated the expression of IkBα, NFkB p65, TRIF and IRF-3, which are involved in TLR4-mediated signaling in OC during ethanol intake. Collectively, our results suggest that mel attenuates the TLR4-induced MyD88- and TRIF-dependent signaling pathways in ethanol-preferring rats with OC.
Publication Date: 2015-02-07
Journal: BMC cancer

Autophagy regulator BECN1 suppresses mammary tumorigenesis driven by WNT1 activation and following parity.
Earlier studies reported allelic deletion of the essential autophagy regulator BECN1 in breast cancers implicating BECN1 loss, and likely defective autophagy, in tumorigenesis. Recent studies have questioned the tumor suppressive role of autophagy, as autophagy-related gene (Atg) defects generally suppress tumorigenesis in well-characterized mouse tumor models. We now report that, while it delays or does not alter mammary tumorigenesis driven by Palb2 loss or ERBB2 and PyMT overexpression, monoallelic Becn1 loss promotes mammary tumor development in 2 specific contexts, namely following parity and in association with wingless-type MMTV integration site family, member 1 (WNT1) activation. Our studies demonstrate that Becn1 heterozygosity, which results in immature mammary epithelial cell expansion and aberrant TNFRSF11A/TNR11/RANK (tumor necrosis factor receptor superfamily, member 11a, NFKB activator) signaling, promotes mammary tumorigenesis in multiparous FVB/N mice and in cooperation with the progenitor cell-transforming WNT1 oncogene. Similar to our Becn1(+/-);MMTV-Wnt1 mouse model, low BECN1 expression and an activated WNT pathway gene signature correlate with the triple-negative subtype, TNFRSF11A axis activation and poor prognosis in human breast cancers. Our results suggest that BECN1 may have nonautophagy-related roles in mammary development, provide insight in the seemingly paradoxical roles of BECN1 in tumorigenesis, and constitute the basis for further studies on the pathophysiology and treatment of clinically aggressive triple negative breast cancers (TNBCs).
Publication Date: 2014-12-09
Journal: Autophagy

Insulin acutely triggers transcription of Slc2a4 gene: participation of the AT-rich, E-box and NFKB-binding sites.
The insulin-sensitive glucose transporter protein GLUT4 (solute carrier family 2 member 4 (Slc2a4) gene) plays a key role in glycemic homeostasis. Decreased GLUT4 expression is a current feature in insulin resistant conditions such as diabetes, and the restoration of GLUT4 content improves glycemic control. This study investigated the effect of insulin upon Slc2a4/GLUT4 expression, focusing on the AT-rich element, E-box and nuclear factor NF-kappa-B (NFKB) site. Rat soleus muscles were incubated during 180 min with insulin, added or not with wortmannin (phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma isoform (PI3K)-inhibitor), ML9 (serine/threonine protein kinase (AKT) inhibitor) and tumor necrosis factor (TNF, GLUT4 repressor), and processed for analysis of GLUT4 protein (Western blotting); Slc2a4, myocyte enhancer factor 2a/d (Mef2a/d), hypoxia inducible factor 1a (Hif1a), myogenic differentiation 1 (Myod1) and nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (Nfkb1) messenger ribonucleic acids (mRNAs) (polymerase chain reaction (PCR)); and AT-rich- (myocyte-specific enhancer factor 2 (MEF2)-binding site), E-box- (hypoxia inducible factor 1 alpha (HIF1A)- and myoblast determination protein 1 (MYOD1)-binding site), and NFKB-binding activity (electrophoretic mobility assay). Insulin increased Slc2a4 mRNA expression (140%) and nuclear proteins binding to AT-rich and E-box elements (~90%), all effects were prevented by wortmannin and ML9. Insulin also increased Mef2a/d and Myod1 mRNA expression, suggesting the participation of these transcriptional factors in the Slc2a4 enhancing effect. Conversely, insulin decreased Nfkb1 mRNA expression and protein binding to the NFKB-site (~50%). Furthermore, TNF-induced inhibition of GLUT4 expression (~40%) was prevented by insulin in an NFKB-binding repressing mechanism. GLUT4 protein paralleled the Slc2a4 mRNA regulations. Insulin enhances the Slc2a4/GLUT4 expression in the skeletal muscle by activating AT-rich and E-box elements, in a PI3K/AKT-dependent mechanism, and repressing NFKB-site activity as well. These results unravel how post-prandial increase of insulin may guarantee GLUT4 expression, and how the insulin signaling impairment can participate in insulin resistance-induced repression of GLUT4.
Publication Date: 2014-08-16
Journal: Life sciences

Cytokine polymorphisms are associated with fatigue in adults living with HIV/AIDS.
Fatigue has been associated with inflammation and cytokine activity among adults, but this relationship has not been evaluated among adults living with HIV. Diurnal patterns of fatigue have been previously identified in adults with HIV/AIDS. Thus, the purpose of this study was to describe these fatigue patterns in relation to cytokine plasma concentrations and gene polymorphisms. A convenience sample of 317 adults living with HIV/AIDS completed a measure of fatigue in the morning and evening for three consecutive days; participants reporting low levels of both morning and evening fatigue (n=110) or high levels of fatigue in the morning and evening (n=114) were included in the analysis, resulting in a final sample of 224 adults (151 men, 55 women, and 18 transgender). Plasma cytokines were analyzed, and genotyping was conducted for 15 candidate genes involved in cytokine signaling: interferon-gamma (IFNG), IFNG receptor 1 (IFNGR1), interleukins (IL), nuclear factor of kappa light polypeptide gene enhancer in B cells (NFKB-1 and -2), and tumor necrosis factor alpha (TNFA). Demographic and clinical variables were evaluated as potential covariates. Controlling for genomic estimates of ancestry and self-reported race/ethnicity and gender, the high fatigue pattern was associated with five single nucleotide polymorphisms (SNPs): IL1B rs1071676 and rs1143627, IL4 rs2243274, and TNFA rs1800683 and rs1041981. The IL1B and TNFA polymorphisms were not associated with plasma levels of IL-1β or TNFα, respectively. This study strengthens the evidence for an association between inflammation and fatigue. In this chronic illness population, the cytokine polymorphisms associated with high levels of morning and evening fatigue provide direction for future personalized medicine intervention research.
Publication Date: 2014-03-19
Journal: Brain, behavior, and immunity

Toll-like receptor 11-initiated innate immune response in male mouse germ cells.
Toxoplasma gondii and uropathogenic Escherichia coli (UPEC) may infect the testis and impair testicular function. Mechanisms underlying testicular innate immune response to these two pathogens remain to be clarified. The present study examined the function of TLR11, which can be recognized by T. gondii-derived profilin and UPEC, in initiating innate immune response in male mouse germ cells. TLR11 is predominantly expressed in spermatids. Profilin and UPEC induced the expressions of different inflammatory cytokine profiles in the germ cells. In particular, profilin induced the expressions of macrophage chemotactic protein 1 (MCP1), interleukin 12 (IL12), and interferon gamma (IFNG) through nuclear factor KB (NFKB) activation. UPEC induced the expressions of MCP1, IL12, and IFNG, as well as tumor necrosis factor alpha (TNFA), IL6, and IFNB, through the activation of NFKB, IFN regulatory factor 3, and mitogen-activated protein kinases. Evidence showed that profilin induced the innate response in male germ cells through TLR11 signaling, and UPEC triggered the response through TLR11 and other TLR-signaling pathways. We also provided evidence that local injection of profilin or UPEC induces the innate immune response in the germ cells. Data describe TLR11-mediated innate immune function of male germ cells in response to T. gondii profilin and UPEC stimulations. This system may play a role in testicular defense against T. gondii and UPEC infections in mice.
Publication Date: 2014-01-10
Journal: Biology of reproduction

Effect of pulsed electromagnetic field on inflammatory pathway markers in RAW 264.7 murine macrophages.
In the treatment of bacterial infections, antibiotics have proven to be very effective, but the way in which antibiotics are dosed can create a lag time between the administration of the drug and its absorption at the site of insult. The time it takes an antibiotic to reach therapeutic levels can often be significantly increased if the vascular system is compromized. Bacteria can multiply pending the delivery of the drug, therefore, developing treatments that can inhibit the inflammatory response while waiting for antibiotics to take effect could help prevent medical conditions such as septic shock. The aim of this study was to examine the effect of a pulsed electromagnetic field on the production of inflammatory markers tumor necrosis factor (TNF), transcription factor nuclear factor kappa B (NFkB), and the expression of the A20 (tumor necrosis factor-alpha-induced protein 3), in an inflamed-cell model. Lipopolysaccharide-challenged cells were exposed to a pulsed electromagnetic field at various frequencies in order to determine which, if any, frequency would affect the TNF-NFkB-A20 inflammatory response pathway. Our study revealed that cells continuously exposed to a pulsed electromagnetic field at 5 Hz demonstrated significant changes in the downregulation of TNF-α and NFkB and also showed a trend in the down regulation of A20, as compared with controls. This treatment could be beneficial in modulating the immune response, in the presence of infection.
Publication Date: 2013-04-12
Journal: Journal of inflammation research

Functionalized carbon nanotubes as immunomodulator systems.
In view of the broad potential biomedical applications of carbon nanotubes (CNTs) different studies were performed to assess their effect on the immune system. However, the work performed to date was able to give a restricted view looking only at some activation markers and cytokine expression. The immune system is rarely limited to few molecule interactions being instead always a balance of switching several genes on and off. Whole genome expression (microarray) is a technology able to give the full picture on genome expression. Here we describe a microarray genome-wide study on Jurkat cells, a T lymphocyte cell line, and THP1, a monocytic cell line, representative of both types of immune response, the adaptive and innate, respectively. Since any structure or molecule modification may lead to very different immune reactions, we treated the two cell lines with four types of functionalized multi-walled CNTs that differ in terms of functionalization and diameter. After having assessed the internalization and the lack of toxicity of CNTs in both cell types, we used the Affymetrix technology to analyze the expression of about 32,000 transcripts. Three of the tested nanotubes (i.e., ox-MWCNT-1, ox-MWCNT-NH3(+)-1, and ox-MWCNT-NH3(+)-2) activated immune-related pathways in monocytes but not in T cells. In view of these charateristics they were named as monocyte activating CNTs (MA-CNTs). Molecular pathways upregulated by MA-CNTs included IL6, CD40, dendritic cell maturation, tumor necrosis factor-(TNF)-α/TNFR1-2, NFKB signaling and T helper 1 chemokine pathways (CXCR3 and CCR5 ligand pathways). These pathways are commonly activated during acute inflammatory processes as those associated with immune-mediated tumor rejection and pathogen clearance. One of them (i.e., ox-MWCNT-2) downregulated genes associated with ribosomal proteins in both monocytes and T cells. We validated our findings at gene expression level by performing real-time PCR assessing the most highly modulated genes in monocytes. To confirm the results at protein level, the secretion of IL1β, TNFα, IL6 and IL10 by THP1 and primary monocytes was assessed by ELISA, corroborating gene-expression data. Our results provide new insights into the whole gene expression modulation by different CNTs on immune cells. Considering the well known drug carrier ability of CNTs, our findings demonstrate that MA-CNTs here behave as cell specific immunostimulatory systems, giving very interesting future perspectives for their application also as immunotherapeutic agents and/or vaccine adjuvants.
Publication Date: 2013-03-20
Journal: Biomaterials

Polymorphisms of interleukin-1 Beta and interleukin-17Alpha genes are associated with restless legs syndrome.
Dopamine, iron, and inflammatory pathways are considered important to the development of restless legs syndrome (RLS). Recent genetic studies support involvement of dopamine and iron; however, cytokine gene variation in the inflammatory component remains unexplored. A recent study reported a high prevalence of RLS among HIV-infected adults. We estimate occurrence of RLS in an ethnically diverse sample of HIV-infected adults and examine differences in demographic factors, clinical characteristics, and biomarkers relating to dopamine, iron, and inflammation between adults with and without RLS symptoms. A prospective longitudinal study aimed at identifying biomarkers of RLS symptom experience among HIV-infected adults. 316 HIV-positive adults were evaluated using International RLS Study Group criteria. Genes were chosen for hypothesized relationships to dopamine (NOS1, NOS2), iron (HFE) or inflammation-mediated by cytokine genes (interferon [IFN], interleukin [IL], nuclear factor kappa-B [NFKB], and tumor necrosis factor alpha [TNFA]). Similar to general population estimates, 11% of the sample met all four RLS diagnostic criteria. Controlling for race, gender, and hemoglobin, carrying two copies of the minor allele for IL1B rs1143643, rs1143634, or rs1143633 or carrying the minor allele for IL17A rs8193036 was associated with increased likelihood of meeting RLS diagnostic criteria. This study provides preliminary evidence of a genetic association between IL1B and IL17A genes and RLS.
Publication Date: 2013-03-06
Journal: Biological research for nursing

What blood temperature for an ex vivo extracorporeal circuit?
Ex vivo circuits are commonly used to evaluate biomaterials or devices used for extracorporeal blood purification. However, various aspects of the ex vivo circuit, apart from the circuit materials, may affect inflammation and coagulation. One such aspect is temperature. The aim of this study was to evaluate the influence of different blood temperature conditions on inflammation parameters in an ex vivo circuit. Blood was collected from 20 healthy volunteers and run through three different experimental conditions for 4 h: a miniaturized ex vivo extracorporeal circuit equipped with a blood warmer set to 37°C, the same circuit without the warmer (23°C), and a tube placed in an incubator at 37°C (no circuit). We measured the granulocyte macrophage colony-stimulating factor, the tumor necrosis factor, and the interleukin (IL)-1β, IL-6, IL-8, and IL-10 concentrations at baseline, 15, 60, 120, and 240 min. Human leukocyte antigen (HLA)-DR, CD11b, CD11a, CD62L, tumor necrosis factor alpha converting enzyme, annexin V expression, and NFkB DNA binding were measured in monocytes and polymorphonuclear neutrophils (PMNs) using flow cytometry at baseline, 120 min, and 240 min. While cytokine production over time was very slight at room temperature, levels increased by more than 100-fold in the two heated conditions. Differences in the expression of some surface markers were also observed between the room temperature circuit and the two heated conditions (CD11b PMN, P < 0.0001; HLA-DR Mono, P=0.0019; and CD11a PMN, P<0.0001). Evolution of annexin V expression was also different over time between the three groups (P=0.0178 for monocytes and P=0.0011 for PMNs). A trend for a greater NFkB DNA binding was observed in the heated conditions. Thus, for ex vivo studies using extracorporeal circuits, heating blood to maintain body temperature results in significant activation of inflammatory cells while hypothermia (room temperature) seems to suppress the leukocyte response. Both strategies may lead to erroneous conclusions, possibly masking some specific effects of the device being studied. Investigators in this field must be aware of the fact that blood temperature is a crucial confounding parameter and the type of "background noise" they will face depending on the strategy adopted.
Publication Date: 2011-02-15
Journal: Artificial organs